'Snapshots' Shake Up Views about Proteins

June 14, 2006

In 2002, University of Maryland biochemist Victor Muñoz observed something about proteins that challenged the generally accepted theory about how proteins assume their biologically active states – a process called folding. Muñoz suggested that, in contrast to the belief that all proteins fold in one sudden movement, some of them in fact fold and unfold gradually, in a random series of steps called downhill folding.

In the June 15 online issue of the journal Nature, Muñoz presents clear evidence of the potential of his earlier observation. Using nuclear magnetic resonance spectroscopy, which allowed detection of protein folding events at the level of single atoms, Muñoz and his team produced the equivalent of a sequence of snapshots of the protein folding process. Their findings could change the way scientists look at proteins, the molecular nanomachines that perform most of the body’s critical functions.

“We found that some proteins do not fold like popcorn exploding, but do it in a more gradual downhill folding process that can be dissected with modern high-resolution techniques,” says Muñoz. “We were able to see the folding process with such resolution because we could stop it at a certain point, observe a property, then move on to the next step. We can now ask specific questions about the rules of protein folding.”

Understanding protein folding could lead to the ability to manipulate proteins to prevent disease, such as Alzheimer’s and Parkinson’s Diseases, which result when protein folding goes awry; create proteins that could prevent crops from freezing; or even design simple proteins that can be used as laundry detergent.

The Downhill Fold

A protein must fold into a specific and unique three-dimensional structure to be functional. The totally scrambled protein and the finished 3-D structure are all scientists have previously been able to see, which led many to believe that folding was a one-step process. “Obviously, the process had to be much more complicated than that,” says Muñoz. “The question was to find the appropriate protein and methods to unveil all this complexity. By analyzing individual atoms in a downhill protein, we were able to resolve the structural events that take place during folding.”

Muñoz compares this process to figuring out how a car is assembled. “It’s very hard to understand how a car is put together by just looking at all the pieces in the storeroom or the complete car exiting the assembly line. You don’t know what the parts do or how they are put together. But if you can look at each step of the assembly process, then you have the blueprint you need to build the car.”

Starting With a “Mess”

Muñoz’s team looked at many atoms in the folding process. “It looks like a mess at first, but with sophisticated statistical tools, you start to see exquisite patterns,” says Munoz. You start to see what is connected to what, how the folding forces are acting to hold atoms together in space. Confirming the atom-by-atom assembly process characteristic of downhill folding gives us a new recipe for studying protein folding.”

Co-authors of the paper are Mourad Sadqi and David Fushman, also of the University of Maryland. The research was supported by grants from the National Science Foundation and the National Institutes of Health.

Source: University of Maryland, College Park

Explore further: Getting to the bottom of ageing

Related Stories

Getting to the bottom of ageing

July 31, 2015

The question of why we age is one of the most fascinating questions for humankind, but nothing close to a satisfactory answer has been found to date. Scientists at the Leibniz-Institut für Molekulare Pharmakologie in Berlin ...

How to make chromosomes from DNA

July 28, 2015

Researchers at the University of Tokyo have discovered a long-overlooked process important for converting a long, string-like DNA molecule into a chromosome. This finding gives us a better understanding of the mechanism of ...

The mystery of the instant noodle chromosomes

July 23, 2015

A group of researchers from the Lomonosov Moscow State University tried to address one of the least understood issues in the modern molecular biology, namely, how do strands of DNA pack themselves into the cell nucleus. Scientists ...

Moore's Law is 50 years old but will it continue?

July 20, 2015

It's been 50 years since Gordon Moore, one of the founders of the microprocessor company Intel, gave us Moore's Law. This says that the complexity of computer chips ought to double roughly every two years.

Recommended for you

Fast times and hot spots in plasmonic nanostructures

August 4, 2015

The ability to control the time-resolved optical responses of hybrid plasmonic nanostructures was demonstrated by a team led by scientists in the Nanophotonics Group at the Center for Nanoscale Materials including collaborators ...

Study explores nanoscale structure of thin films

August 4, 2015

The world's newest and brightest synchrotron light source—the National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory—has produced one of the first publications ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.