Size Matters: From Aerosol Particles to Cloud Droplets

June 2, 2006
Size Matters: From Aerosol Particles to Cloud Droplets
© Max Planck Institute for Chemistry

Clouds play a central role in the Earth’s climate system and water cycle. A cloud’s behavior depends to a great extent on the number and size of the droplets it is made of. Since each of these droplets requires a seed aerosol particle to grow upon (called cloud condensation nucleus, CCN), it is essential to understand what properties of an aerosol particle allow it to grow into a cloud drop.

Basic physical chemistry shows that, to a first approximation, this depends on the number of soluble molecules it contains, which is a function of its size and composition. Given the very diverse origin of atmospheric particles (e.g., sea salt, dust, smoke, and industrial emissions), the complexity of their composition has long been seen as a major obstacle to modeling and predicting aerosol effects on cloud properties and climate.

To separate the effects of size and composition, the researchers of the Max Planck Institute for Chemistry and the University of Mainz divided ambient aerosols into narrow size classes and then determined their chemical composition and ability to grow into cloud drops.

They made the measurements in summer 2004, on top of the Kleiner Feldberg in the Taunus Mountains of Germany. During the 3-week measurement period, diverse air masses were encountered at the mountaintop station: aged continental air that had accumulated industrial and traffic pollution, marine air masses that had moved in rapidly from the North Atlantic, and fresh pollution from the densely populated and industrialized Rhine-Main area.

The aerosol composition was dominated by organic material in all air mass types, followed by ammonium, sulfate and nitrate. Interestingly, in spite of the different histories of the air, the soluble fraction of the particles did not appear to vary all that much.

The measurements showed that, at least for the types of aerosol encountered at our continental site in Europe, particles size plays a much greater role than composition in regulating cloud droplet nucleation. The fundamental reason is that CCN ability depends to first approximation on the total number of soluble molecules in the particle. This number depends only linearly on the soluble mass fraction (i.e., composition), but to the third power on size.

The fact that, at least for the kinds of aerosols found in regions like Europe, particle composition plays only a secondary role in cloud drop growth has great practical advantages. It makes it much easier to estimate CCN concentrations by relatively simple measurements, and simplifies their representation in cloud and climate models. With the knowledge of typical size-resolved CCN efficiencies for key regions and aerosol types, CCN concentrations can be estimated from observed or modeled size distributions. Establishing a data base of such size-resolved CCN efficiencies should be the focus of field studies in different locations. In models, more effort should be spent on accurately predicting particle size distributions, rather than detailed chemical composition.

The findings of the Mainz researchers also provide a basis for the estimation of CCN abundances over larger time and space scales by remote sensing, as aerosol size distributions can be obtained much more easily by remote sensing than particle compositions.

Citation: U. Dusek, et. al., Size matters more than chemistry for cloud nucleating ability of aerosol particles, Science, 2 June 2006

Source: Max Planck Institute

Explore further: Making the new silicon: Gallium nitride electronics could drastically cut energy usage

Related Stories

Neptune's moon of Triton

July 29, 2015

The planets of the outer solar system are known for being strange, as are their many moons. This is especially true of Triton, Neptune's largest moon. In addition to being the seventh-largest moon in the solar system, it ...

Heliophysicist waits nearly 10 years for Pluto flyby

July 8, 2015

When NASA's New Horizons mission to Pluto flies past the distant, icy world on July 14, NASA heliophysicist Nikolaos Paschalidis will be one happy man: he created a mission-enabling technology that will help uncover details ...

NASA image: Stellar sparklers that last

July 3, 2015

While fireworks only last a short time here on Earth, a bundle of cosmic sparklers in a nearby cluster of stars will be going off for a very long time. NGC 1333 is a star cluster populated with many young stars that are less ...

What is the biggest planet in the solar system?

June 25, 2015

Ever since the invention of the telescope four hundred years ago, astronomers have been fascinated by the gas giant of Jupiter. Between it's constant, swirling clouds, its many, many moons, and its Giant Red Spot, there are ...

Rosetta and Philae at comet 67P/Churyumov-Gerasimenko

June 22, 2015

Rosetta has been exploring comet 67P/Churyumov-Gerasimenko since summer 2014. In November 2014, the Philae lander landed on the surface of the comet. The first measurements by the scientific instruments allow conclusions ...

Recommended for you

Out of the lamplight

July 31, 2015

The human body is governed by complex biochemical circuits. Chemical inputs spur chain reactions that generate new outputs. Understanding how these circuits work—how their components interact to enable life—is critical ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.