Scientists predict pulsar starquakes

June 5, 2006

Scientists have discovered how to predict earthquake-like events in pulsars, the dense remains of exploded stars. These are violent episodes that likely crack a pulsar's dense crust and momentarily increase its spin rate.

John Middleditch of Los Alamos National Laboratory led the discovery team and presents these findings today at the American Astronomical Society Meeting in Calgary.

Middleditch and his team have discovered that for one particular pulsar, named PSR J0537-6910, the time until the next quake is proportional to the size of the last quake. Using this simple formula, the scientists have been able to aim NASA's Rossi X-ray Timing Explorer at the pulsar a few days before a quake to watch the event unfold.

Using the Rossi Explorer, the team has tracked about 20 "starquakes" in this pulsar over the past eight years and uncovered a remarkably simple, predictive pattern.

"By monitoring the pulsar spin rate and changes in the spin, we can pin down a starquake event to within a couple of days," said Middleditch. "These and other details have helped to simplify what has, until now, appeared to be a bewildering assemblage of facts about starquakes in pulsars. If only predicting earthquakes were this straightforward."

Once several times more massive than our sun, a pulsar contains about a sun's worth of mass compacted in a sphere only about 20 miles across. A pulsar is so dense that a teaspoon of its material would weigh two billion tons on Earth. The pulsar is so named because from our perspective it pulses with radiation from its two magnetic poles as it spins, sending two lighthouse-like beams through space.

PSR J0537-6910 is located in a 4,000-year old supernova remnant near the Milky Way galaxy, about 170,000 light years from Earth, visible in the Southern Hemisphere.

The pulsar is known for its frequent quakes, which scientists call glitches. Pulsars are born spinning rapidly, but gradually slow down. During a glitch, the spin rate increases slightly. PSR J0537-6910 spins at a rate of about 62 times per second, or 62 hertz. During a glitch, this pulsar's spin jumps up as much as one cycle every seven hours, a greater gain than what is seen in any other pulsar. Then the pulsar proceeds to slow down again.

After about 10 glitches since monitoring began in 1999, the scientists saw a pattern. The amount of increase in spin with each glitch could be translated directly into the number of days until the next glitch. Larger glitches meant a longer wait until the next one.

The predictive nature of these glitches firms up the leading theory on their cause. Pulsars have a solid crust, but are permeated with a liquid "neutron superfluid." Much of the crust's own superfluid does not slow with the pulsar, but when the difference in rotation rates exceeds a certain threshold, a large fraction of the excess can be "dumped" into the solid crust through massive cracking, making the pulsar spin faster.

The major glitch is always preceded by small ones, representing local dumps of rotation due to localized, small cracking. "A month ago we were watching the pulsar get the 'jitters' before the big quake," Middleditch said. "Then, by May 7, 2006 the big one had happened. We can only predict one glitch at a time."

Middleditch's colleagues include Frank Marshall and Will Zhang of NASA's Goddard Space Flight Center in Greenbelt, Md.; Eric Gotthelf of Columbia University in New York; and Daniel Wang of the University of Massachusetts, Amherst.

Middleditch noted that his team also found evidence the pulsar's magnetic pole is moving a few feet every year. Although a known feature on Earth, this is the first strong case for magnetic pole migration on a pulsar.

Source: Los Alamos National Laboratory

Explore further: Astronomers detect glitch in a millisecond pulsar

Related Stories

Astronomers detect glitch in a millisecond pulsar

June 17, 2016

(Phys.org)—European astronomers have uncovered evidence of a small glitch in the spin of a millisecond pulsar. According to a research paper published on June 13 on arXiv.org, the pulsar, designated PSR J0613-0200, exhibits ...

Researchers find a new way to weigh a star

October 5, 2015

Researchers from the University of Southampton have developed a new method for measuring the mass of pulsars – highly magnetised rotating neutron stars formed from the remains of massive stars after they explode into supernovae.

Listening to the stars

December 1, 2011

It is almost night on the island of Puerto Rico. Astronomer Joanna Rankin raises her head toward the sky. A few of the brightest stars shine through blue cracks in a ragged dome of gray clouds. To her back, a jungle throbs ...

Vela Pulsar

January 8, 2013

(Phys.org)—This movie from NASA's Chandra X-ray Observatory shows a fast moving jet of particles produced by a rapidly rotating neutron star, and may provide new insight into the nature of some of the densest matter in ...

Pulsars make a GPS for the cosmos

August 16, 2013

(Phys.org) —CSIRO scientists have written software that could guide spacecraft to Alpha Centauri, show that the planet Nibiru doesn't exist … and prove that the Earth goes around the Sun.

Recommended for you

Rocky planet found orbiting habitable zone of nearest star

August 24, 2016

An international team of astronomers including Carnegie's Paul Butler has found clear evidence of a planet orbiting Proxima Centauri, the closest star to our Solar System. The new world, designated Proxima b, orbits its cool ...

WISE, Fermi missions reveal a surprising blazar connection

August 24, 2016

Astronomers studying distant galaxies powered by monster black holes have uncovered an unexpected link between two very different wavelengths of the light they emit, the mid-infrared and gamma rays. The discovery, which was ...

China unveils 2020 Mars rover concept: report

August 24, 2016

China has unveiled illustrations of a Mars probe and rover it aims to send to the Red Planet at the end of the decade in a mission that faces "unprecedented" challenges, state media said on Wednesday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.