Scientists design Maglev car with greater stability

June 2, 2006 feature
Scientists design Maglev car with greater stability
Scientists have fabricated Maglev car models using high temperature superconducting technology, which could increase stability and inspire further developments to confront Maglev challenges. Photo credit: Wanmin Yang et al.

Since the late ‘60s, scientists have been designing, building and operating “flying trains,” or magnetically levitated (“Maglev”) systems. However, the sci-fi-like technology still faces challenges for increased stability, controllability and cost-effectiveness – but scientists are making steady improvements.

Maglev trains, which use the electromagnetic force to overcome gravity, have intrigued scientists for the past several decades. Levitating several centimeters above the track, the train cars have no physical contact and no friction with the track, enabling speeds of more than 400 mph. Implementing Maglevs into urban areas – or even across the country – could make a five-hour drive a smooth 40-minute ride, as well as reinvent the world’s infrastructure.

The first operating low-speed Maglev systems, built in England and Germany in the mid-‘80s, are no longer in existence. However, the newest 300-mph system built in 2002 in Shanghai, China has revived political and consumer interest in the technology, despite current large construction costs. Although the city plans to extend the 18-mile track to 100 miles for the World Expo in 2010, the technology must become more economically viable with proven safety for mainstream adoption.

As part of the investigation, a team of scientists (W. Yang et al.) from China has recently designed and built a new model for a Maglev car that could offer significant stability advantages over current technology. The scientists used specially fabricated high temperature superconductors (HTSC) for the cars and permanent magnets for the tracks, which demonstrate a higher levitation force and greater stability than when permanent magnets are used on both the track and car. Although the car models are only about 12 cm long and 4 cm wide, they demonstrated frictionless, stable movement across the 10-meter-long track.

“The arrangement of the magnets made it easy to get a uniform magnetic field distribution along the length of the track,” wrote W. Yang et al. in a recent issue of Superconductor Science and Technology. “The model can be used [for] a fast transportation system to students and adults.”

In the HTSC model, the cars are propelled by a combination of linear motors on the tracks and aluminum rotors on the cars. Photoelectric switches near the linear motors save energy by ensuring that the motors work only when the car is traveling through them.

The HTSC model’s large magnetic fields across the track also provide a strong guidance force and good magnetic distribution that prohibits the cars from escaping the track. Because this magnetic configuration provides a large dragging force, it also eliminates the need for any exterior stability control.

Using liquid nitrogen to cool the HTSCs to -196 degrees C, the scientists investigated different cooling methods to optimize the levitation and guidance forces. The team found that a field cooled process, which cools the magnets inside the car after the car is on the track, provides significant stability, but also requires further investigation.

Citation: Yang, W. M., et al. A small Maglev car model using YBCO bulk superconductors. Superconductor Science and Technology. 19 (2006) S537-S539.

By Lisa Zyga, Copyright 2006 All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

Explore further: Heads up: Cambridge holographic technology adopted by Jaguar Land Rover

Related Stories

Technology that lets self-driving cars, robots see

November 2, 2015

LiDAR, once used in the Apollo 15 lunar mission, has shrunk in size and cost, making it easier for researchers and product makers to bring the 3D vision mapping technology to smart devices.

Recommended for you

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.