A probable cause for Parkinson's?

June 28, 2006

Parkinson's, Alzheimer's, Lou Gehrig's disease and other brain disorders are among a growing list of maladies attributed to oxidative stress, the cell damage caused during metabolism when the oxygen in the body assumes ever more chemically reactive forms.

But the precise connection between oxidation and neurodegenerative diseases has eluded researchers. Now, a study by the Department of Energy's Pacific Northwest National Laboratory and UCLA's David Geffen School of Medicine reveals that damage is linked to a natural byproduct of oxidation called nitration.

"We looked at a healthy brain and found nitration of proteins that are implicated in neurodegenerative disease," said Colette Sacksteder, PNNL scientist and lead author of the study, published in the July issue of the journal Biochemistry (online Wed., June 28). PNNL scientist Wei-Jun Qian was co-lead author.

The results are from the most detailed proteomic analysis of a mammalian brain to date – that is, a survey of nearly 8,000 different, detectable proteins in the mouse brain. The research suggests that many neurodegenerative diseases leave a biochemical calling card, or biomarker, that could be used to predict the earliest stages of brain impairment. Many biomedical researchers believe that detecting disease states before symptoms occur is the key to reversing many as-yet-incurable diseases.

The biomarker is known as nitrotyrosine, made when an amino acid in the brain, tyrosine, is in the presence of an oxidative-stress molecule called peroxynitrate. The biomarker was found on 31 sites along 29 different proteins, half of which had been previously implicated in several of the neurodegenerative diseases.

"Our study certainly suggests that the sensitivity of certain proteins to peroxynitrite is an early contributor to neurodegeneration, but other factors may also be involved," said Diana Bigelow, PNNL staff scientist and the paper's corresponding author. "The next step, of explicitly looking at tissues with neurodegenerative disease, will test this hypothesis."

The study was made possible by a specially modified mass spectrometer at PNNL, housed at the W.R. Wiley Environmental Molecular Sciences Laboratory. The instrument, designed and operated by a group led by co-author and Richard D. Smith, a Battelle Fellow, separates and identifies proteins with unprecedented precision. Bigelow and colleagues supported the results with standard molecular biology techniques.

Source: Pacific Northwest National Laboratory

Explore further: Breakthrough in 'marriage-broker' protein

Related Stories

Breakthrough in 'marriage-broker' protein

August 12, 2015

Scientists at the Montreal Neurological Institute and Hospital -The Neuro, at McGill University and the McGill University Health Centre, have made a breakthrough in understanding an important protein that appears to act as ...

Protein aggregates save cells during aging

May 8, 2015

As an organism ages, a gradual loss of cellular protein quality control occurs. This results in the increased production of toxic protein clumps, so-called aggregates. Using a comprehensive approach, researchers in the teams ...

Sugar key to cellular protein protection and viability

March 16, 2015

A Simon Fraser University laboratory's breakthrough in understanding how a specialized sugar regulates protein levels in our cells could generate new targets for therapies to treat diseases caused by improper protein regulation. ...

Recommended for you

Just a touch of skyrmions

October 13, 2015

Ancient memory devices such as handwriting were based on mechanical energy—but in the modern world they have given way to devices based generally on electrical manipulation.

Toyota promises better mileage and ride with Prius hybrid

October 13, 2015

Toyota Motor Corp. released details for its fourth-generation Prius on Tuesday, promising that improvements in the battery, engine, wind resistance and weight mean better mileage for the world's top-selling hybrid car.

What happens when your brain can't tell which way is up?

October 13, 2015

In space, there is no "up" or "down." That can mess with the human brain and affect the way people move and think in space. An investigation on the International Space Station seeks to understand how the brain changes in ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.