Photonics: Pump up the bandwidth

June 21, 2006

U.S. scientists say they've developed an optical amplifier based on silicon that works across a wide range of frequencies.

Using all-optical devices on a chip, rather than electronic circuits, promises to boost the speed of information processing. And now the discovery by Cornell University researchers could help bring practical all-optical information processing closer.

As computer manufacturers are already very good at producing silicon chips, scientists have been trying to develop optical processing elements that are based on silicon. Previously developed optical amplifiers using silicon only work within a very narrow range of frequencies of light.

Alexander Gaeta and colleagues say they've developed a silicon waveguide that can amplify light waves with a relatively broad range of frequencies, relying on a process called phase-matched four-wave mixing. That, they said, should allow much higher volumes of information to be processed by the same chip, and makes it easier to add other devices, such as delays and switches, to the optical circuits.

The development is explained in the current issue of the journal Nature.

Copyright 2006 by United Press International

Explore further: Researchers transform slow emitters into fast light sources

Related Stories

Researchers transform slow emitters into fast light sources

October 22, 2015

Researchers from Brown University, in collaboration with colleagues from Harvard, have developed a new way to control light from phosphorescent emitters at very high speeds. The technique provides a new approach to modulation ...

ITER diagnostics heat up across the US

November 2, 2015

ITER, the world's largest tokamak now under construction in France, will have over 60 diagnostic systems installed to enable plasma control, optimize plasma performance, and support machine protection. Princeton Plasma Physics ...

First circularly polarized light detector on a silicon chip

September 22, 2015

Invention of the first integrated circularly polarized light detector on a silicon chip opens the door for development of small, portable sensors that could expand the use of polarized light for drug screening, surveillance, ...

Recommended for you

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

SLAC theorist explains quantum gravity

November 19, 2015

Our world is ruled by four fundamental forces: the gravitational pull of massive objects, the electromagnetic interaction between electric charges, the strong nuclear interaction holding atomic nuclei together and the weak ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.