Nano-tip could play integral part in heat-assisted data storage devices

June 9, 2006 feature
Nano-tip could play integral part in heat-assisted data storage devices
In this drawing of an atomic force microscope tip transferring heat to a surface, the heated zone causes air molecules to collide, which heats a specific, localized surface with no contact. The technique could help develop heat-assisted magnetic recording, an innovative alternative for future data storage technology. Photo credit: Pierre-Olivier Chapuis et al.

Using a tip with a nano heat source that never touches the surface, scientists have shown how to heat a localized surface with no contact. The discovery could open the doors to heat-assisted data storage devices and nano thermometers.

Every year, the world’s data storage needs more than double. Understanding heat transfer on the nanoscale is imperative for fabricating technology that will affect nearly everyone living in first-world countries. All over the world, scientists are rushing to develop an alternative data storage system in an effort to increase the space that our information-overloaded society is running out of.

One of the options, called thermally-assisted or heat-assisted data storage, works by using a laser to heat a data disc, which stabilizes the magnetic recording process by making it easier to write data when hot and retain data when subsequently cooled. The process overcomes a critical point that conventional magnetic recording devices will soon encounter, known as the superparamagnetic limit. As scientists increase data storage on conventional systems by making the room-temperature bits smaller, at a certain size the bits will become magnetically unstable, will fall out of place, and their information will vanish.

In a recent study on heat transfer between a tip and a surface, scientists from France have made a significant step toward the development of heat-assisted data storage, as well as other applications. The team calculated the heat transfer between a silicon tip and a surface, which is dominated mostly by air conduction.

“Heat transfer is well known at the macroscopic level (described by Fourier diffusion when collisions between molecules induce thermodynamic local equilibrium),” Pierre-Olivier Chapuis, coauthor of the recent paper in Nanotechnology, told PhysOrg.com. “Heat transfer can also be calculated in the pure ballistic regime (when there is no collision between molecules). But calculating heat transfer in the intermediate regime, when there are a few collisions, still remains a challenge.”

In their experiment, the scientists used a tip with a heat source about 20 nanometers high hovering between zero and 50 nanometers above a surface. The heat transfer occurs when cold molecules in the air are heated when they come in contact with the hot tip, then fly to the disk surface, colliding sometimes with other molecules before reaching the surface. Using Boltzmann’s law on the movement of gas, the scientists proposed for the first time a heat distribution at this scale and levels of heat flux.

The team showed that the heat transfer through the air takes only a few tens of picoseconds (10-12) seconds) to propagate from the tip to the surface when there is no contact. The scientists also found that below the height of 10 nanometers, a hot tip can heat a region with an edge of 35 nanometers while maintaining its shape; beyond this height, the shape is lost and the thermal spot increases significantly.

Heat-assisted data storage products, which are generally predicted to break into the market around 2010, could achieve data density of trillions of bits (terabytes) per square inch, dwarfing the current density. Scanning thermal microscopy, which acts like a nano thermometer to sense temperature and thermal conductivity on the nanoscale, could also benefit from this non-contact, localized heat transfer method.

“In thermally-assisted data storage, levels of heat flux are very important because you need to know if the increase of temperature is enough to reach the crtitical temperature (e.g. melting point),” said Sebastian Volz, coauthor of the study. “Scanning thermal microscopy can benefit from this work because it shows that, by reducing the heat source, you will probe more locally than what can be achieved now. Our work proposes a heat distribution in this field, which could help industrials design their devices.”

Citation: Chapuis, Pierre-Olivier, Greffet, Jean-Jacques, Joulain, Karl and Volz, Sebastian. Heat transfer between a nano-tip and a surface. Nanotechnology 17 (2006) 2978-2981.

By Lisa Zyga, Copyright 2006 PhysOrg.com.

Explore further: A heat-seeking slingshot: Liquid droplets show ability to cool extremely hot surfaces

Related Stories

Nondestructive techniques to detect damage in composites

February 2, 2016

Researcher David Moore holds a rectangle of hard carbon composite material, smooth with a faint woven pattern on its surface. The sample shows normal wear and tear until he turns it over to reveal a circular impact mark with ...

Severe drought no longer caused just by nature

February 2, 2016

Scientists at the University of Birmingham are calling on drought researchers and managers around the world to consider both human activity and natural phenomena in their battle to preserve increasingly scarce global water ...

Tiniest spin devices becoming more stable

February 3, 2016

(Phys.org)—In 2011, the research group of Roland Wiesendanger, Physics Professor at the University of Hamburg in Germany, fabricated a spin-based logic device using the spins of single atoms, a feat that represents the ...

Recommended for you

Graphene is strong, but is it tough?

February 4, 2016

Graphene, a material consisting of a single layer of carbon atoms, has been touted as the strongest material known to exist, 200 times stronger than steel, lighter than paper, and with extraordinary mechanical and electrical ...

A new way to make higher quality bilayer graphene

February 8, 2016

(Phys.org)—A team of researchers with members from institutions in the U.S., Korea and China has developed a new way to make bilayer graphene that is higher in quality than that produced through any other known process. ...

Nanoparticle ink could combat counterfeiting

February 5, 2016

(Phys.org)—Researchers have demonstrated that transparent ink containing gold, silver, and magnetic nanoparticles can be easily screen-printed onto various types of paper, with the nanoparticles being so small that they ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.