Designer Gradients Speed Surface Science Experiments

June 8, 2006
Designer Gradients Speed Surface Science Experiments

Researchers from the National Institute of Standards and Technology have demonstrated an elegantly simple technique for synthesizing a wide variety of complex surfaces that vary in a controlled fashion across a test strip. The new technique is so flexible that it can be applied to surface science experiments ranging from developing better paints to exploring the bonding of proteins to cell membranes.

So-called “gradient composition surfaces”—their chemical composition changes gradually across the surface—have been shown to be powerful research tools for rapid, high-throughput testing of complicated surface properties, but they can be tricky to build. The new NIST technique described in a recent paper in Advanced Materials coats a silicon wafer with a brush-like copolymer surface, varying the relative concentration of two components, or monomers, of the polymer along the length of the substrate. The dense polymer brush provides a controlled interaction surface at the top while effectively masking the underlying substrate.

The heart of the NIST technique is a combined microfluidic mixer and reaction chamber. The two components are injected into the mixer with gradually changing flow rates and mix thoroughly before filling a thin reaction chamber holding the silicon wafer substrate. Once the solution leaves the mixing region, the narrow dimensions of the reaction chamber inhibit further mixing, so the varying composition ratios through the chamber remain stable while the solution polymerizes on the substrate.

Because it keeps the fluid mixture concentrations stable for long periods, the new technique is unique in its ability to accommodate a wide variety of materials, potentially producing test surfaces for studying surface phenomena ranging from nanoscale interactions of biomolecules—critical for improving the performance of tissue-engineered medical products or for identifying the fundamental mechanisms key to cell/surface adhesion—to the performance of new products like paints or adhesives. The specific polymer used in these proof-of-concept experiments, for example, is typical of a temperature- or acidity-sensitive polymer that might be used in a drug delivery system.

Citation: C. Xu, S.E. Barnes, T. Wu, D.A. Fischer, D.M. DeLongchamp, J.D. Batteas, and K.L. Beers. Solution and surface composition gradients via microfluidics confinement: fabrication of a statistical-copolymer-brush composition gradient. Adv. Mater. 2006, 18, 1427-1430.

Source: NIST

Explore further: Scientists look inside the works of great artists

Related Stories

Scientists look inside the works of great artists

September 17, 2015

A new exhibit at the McMaster Museum of Art brings together years of painstaking research by an international team of scientists, engineers, conservators and art historians who have used sophisticated equipment and techniques ...

The feasibility of deflecting asteroids

September 1, 2015

It's the ultimate science fiction: The immense power of the sun is harnessed and converted into a massive phased array of laser beams that have the potential to intercept and deflect asteroids before they smash into Earth.

Brazilian wasp venom kills cancer cells by opening them up

September 1, 2015

The social wasp Polybia paulista protects itself against predators by producing venom known to contain a powerful cancer-fighting ingredient. A Biophysical Journal study published September 1 reveals exactly how the venom's ...

The dwarf planet Quaoar

August 28, 2015

The vast Kuiper Belt, which orbits at the outer edge of our solar system, has been the site of many exciting discoveries in the past decade or so. Otherwise known as the Trans-Neptunian region, small bodies have been discovered ...

Recommended for you

Team extends the lifetime of atoms using a mirror

October 13, 2015

Researchers at Chalmers University of Technology have succeeded in an experiment where they get an artificial atom to survive ten times longer than normal by positioning the atom in front of a mirror. The findings were recently ...

A particle purely made of nuclear force

October 13, 2015

Scientists at TU Wien (Vienna) have calculated that the meson f0(1710) could be a very special particle – the long-sought-after glueball, a particle composed of pure force.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.