Carbon Dots Newest Member of Brightly Luminescent Nanoparticle Family

June 5, 2006

Chemists at Clemson University have developed a new type of quantum dot that is the first to be made from carbon. Like their metal-based counterparts, these nanoscale "carbon dots" glow brightly when exposed to light and show promise for a broad range of applications, including improved biological sensors and medical imaging devices. The carbon-based quantum dots may be less toxic and less expensive than metal-based quantum dots. This work appears in the Journal of the American Chemical Society.

"Carbon is hardly considered to be a semiconductor, so luminescent carbon nanoparticles are very interesting both fundamentally and practically," says study leader Ya-Ping Sun, Ph.D. "It represents a new platform for the development of luminescent nanomaterials for a wide range of applications."

Quantum dots have generated much interest in recent years, especially for potential applications in biology and medicine. These tiny particles have been developed from compounds composed of lead, cadmium and, more recently, silicon. But these materials have raised concerns over potential toxicity and environmental harm, though investigators have developed a variety of approaches for encapsulating these semiconductor nanoparticles in polymers to render them inert. Nevertheless, scientists continue searching for more benign compounds for making quantum dots.

Researchers have known for some time that carbon nanoparticles, due partly to their enormous surface area, have unusual chemical and physical properties quite different from their bulk form. Using nanoparticles produced from graphite, the Clemson investigators demonstrated that when these carbon nanoparticles are covered with special polymers, they glow brightly when exposed to light. The dots glow continuously as long as a light source is present.

The scientists believe that this photoluminescence may be due to the presence of "pockets," or holes, on the surface of the carbon dots that trap energy. The polymer coating acts as a "molecular band-aid," enabling light emission from the inside of the polymer casing, the investigators note. Scientists believe that metal-based quantum dots emit light by a different mechanism.

The polymer coating also allowed the investigators to attach antibodies and other labeling materials to the carbon dot, opening the door to the development of sensors that light up in the presence of tumors or even precancerous cells. In lab studies, the researchers successfully labeled anthrax-like spores with luminescent carbon dots, resulting in glowing spores that were easily viewed under a microscope.

This work is detailed in a paper titled, “Quantum-sized carbon dots for bright and colorful photoluminescence.” This paper was published online in advance of print publication. An abstract is available at the journal’s website.

Source: National Cancer Institute

Explore further: Researchers create light emitting diodes from food and beverage waste

Related Stories

What is life?

October 20, 2015

"Why would NASA want to study a lake in Canada?"

Nanotechnology inspires next-generation dental materials

October 19, 2015

Have a cavity? Ask your dentist about filling it with a mixture of nanoparticles including silica and zirconia. These white fillings (known as nano-composite resins) resemble teeth better than their metal alternatives and ...

Cracking open diamonds for messages from the deep earth

August 25, 2015

Geochemist Yaakov Weiss deals in diamonds. Not the brilliant jewelry-store kind, but the flawed, dirty-looking ones used more for industry than decoration. Gem-grade diamonds are generally pure crystallized carbon, ...

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.