California teens use Rice's NanoKids for virtual nanotech training

Jun 21, 2006

A team of "virtual" teachers developed by a Rice University nanotechnology researcher are going to help some of California's brightest high school students design, build and test new structures, one atom at a time.

The NanoKids and "nanocar" are key components of the curriculum when students report for the Nanotechnology and Robotics class at the California State Summer School for Mathematics and Science (COSMOS) on July 9 at the University of California, Santa Cruz. Both were born in the Rice University labs of James M. Tour, the Chao Professor of Chemistry, professor of mechanical engineering and materials science and professor of computer science.

Students will design and animate the NanoKids, which are characters based on actual anthropomorphic molecules synthesized in the laboratory. The NanoKids help students and teachers visualize molecular-scale science in a way that is fun and easy to understand. The world's first single-molecule car comes complete with chassis, axles and four buckyball wheels. In a kind of reverse CAD process, students will use powerful new molecular modeling software to build the nanocar and learn how to animate it moving across a gold surface, illustrating the same phenomena demonstrated in Tour's lab earlier this year.

"The idea is to use these figures, in an animated sense, to instruct school kids on the beauty of nanoscale research using entities that operate at that size domain," Tour said.

Helping the students "see" what they are doing on the nanoscale will be an early version of NanoEngineer-1 developed by Nanorex Inc., the world's first developer of tools for the design, simulation and analysis of atomically precise molecular machine systems.

"This is NanoEngineer-1's first job in the 'real world', and I am very pleased it will introduce students to the fundamentals of molecular modeling and molecular dynamics simulations," said Nanorex CEO Mark Sims. "It is our hope that Nanorex, through educational partnerships like this one with COSMOS, will help change the way we all think about nanotechnology by no longer defining it within the framework of existing applications and products. I'm eager to see what these bright, creative kids come up with."

Rice University's models and Nanorex's tools will bring students closer than ever to "actually building things atom by atom," said COSMOS instructor Miguel F. Aznar, director of education for the Foresight Nanotech Institute. "This will be the first time we've been able to give high school students hands-on practice with nanotechnology structures. It makes nanotechnology tangible, connecting it to the science they've studied."

Source: Rice University

Explore further: Artificial muscles get graphene boost

Related Stories

UK's first superconducting quantum bit foundry

May 13, 2015

Professor Oleg Astafiev, jointly appointed Professor at Royal Holloway and Visiting Professor at the National Physical Laboratory (NPL), and his team of researchers, have designed, built and operated the ...

A better way to build DNA scaffolds

May 06, 2015

Imagine taking strands of DNA - the material in our cells that determines how we look and function - and using it to build tiny structures that can deliver drugs to targets within the body or take electronic ...

Weighing and imaging molecules one at a time

Apr 27, 2015

Building on their creation of the first-ever mechanical device that can measure the mass of individual molecules, one at a time, a team of Caltech scientists and their colleagues have created nanodevices ...

Recommended for you

Artificial muscles get graphene boost

May 22, 2015

Researchers in South Korea have developed an electrode consisting of a single-atom-thick layer of carbon to help make more durable artificial muscles.

How to make continuous rolls of graphene

May 21, 2015

Graphene is a material with a host of potential applications, including in flexible light sources, solar panels that could be integrated into windows, and membranes to desalinate and purify water. But all ...

Carbon nanothreads from compressed benzene

May 20, 2015

A new carbon nanomaterial – the thinnest possible one-dimensional thread that still retains a diamond-like structure – was created by the controlled, slow compression and decompression of benzene. The ...

Printing 3-D graphene structures for tissue engineering

May 19, 2015

Ever since single-layer graphene burst onto the science scene in 2004, the possibilities for the promising material have seemed nearly endless. With its high electrical conductivity, ability to store energy, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.