Bacteria have their own immune system protecting against outside DNA

June 8, 2006

Bacteria like Salmonella have a complicated immune system that helps them recognize and isolate foreign DNA trying to invade their cell membrane, according to a University of Washington-led study in the June 8 issue of Science Express.

The research, which also included scientists at the Sidney Kimmel Cancer Center in San Diego, could have major implications for understanding the evolution of disease-causing bacteria. The findings may also impact the biotech industry, where bacteria are used to produce recombinant human proteins for medical treatments and research.
A group of researchers led by Dr. Ferric Fang, professor of laboratory medicine and microbiology at the UW School of Medicine, were interested in learning how bacteria respond to genetic information coming from outside sources. Just as immune cells recognize and attack foreign invaders in the human body to protect against harmful infections, single-cell organisms have a protein called H-NS that recognizes foreign DNA and prevents it from becoming active, the researchers discovered.

But bacteria can also benefit from foreign DNA. When Salmonella is infecting an animal or person, for instance, many proteins the bacteria need to cause disease are encoded by DNA acquired from other bacteria. The researchers found that when the bacteria is infecting a host, other molecules can compete with the H-NS protein, allowing the disease-causing genes to be expressed. When the bacteria are in the environment, H-NS turns these genes off to avoid detrimental consequences if all the disease-causing genes were to be expressed at once.

These findings give scientists new insight into how bacteria can protect themselves from an invasion by foreign DNA, yet still take in genetic information from diverse sources that makes them more virulent.

"By harnessing foreign DNA, bacteria that cause typhoid, dysentery, cholera and plague have evolved from harmless organisms into feared pathogens," explained Dr. William Navarre, a senior fellow at the UW and primary author of the study. "This research gives us an explanation of how pathogenic bacteria have evolved over millions of years."

The researchers also learned that the H-NS protein is able to recognize foreign DNA on the basis of its increased content of adenine and thymine, the building blocks of DNA.

"It has been a great mystery why disease-causing genes of bacteria usually contain more adenine and thymine," said Michael McClelland, professor and director of the Molecular Biology Program at the Kimmel Cancer Center. "Now we know this is because such sequences are easier to recruit and regulate than other DNA."

This research could also have major implications for the biotech industry, which uses bacteria for the production of recombinant proteins for medicine and research. These proteins, such as insulin or human growth hormone, are created when a piece of human DNA corresponding to that protein is introduced into bacteria. The bacteria then reproduce many times over, creating more of the protein each time they reproduce. The proteins are purified out from the bacteria, leaving behind only the useful protein. However, in that process, the yield of some human proteins produced in bacteria can be low. The new research indicates that the H-NS "immune system" may be responsible for interfering with the expression of human genes in bacteria.

"Having a better understanding of this system could help the biotech industry make recombinant proteins more efficiently," said Fang. "More foreign protein can be produced in bacteria that don't have the H-NS molecule."

Source: University of Washington

Explore further: Fragments of cell powerhouse trigger immune response that leads to kidney damage, failure after trauma

Related Stories

Researchers pinpoint key influenza-fighting immune trigger

August 12, 2016

St. Jude Children's Research Hospital immunologists have identified the protein trigger in the body's quick-reaction innate immune system that specifically recognizes the influenza virus in infected cells and triggers their ...

Researchers discover otulipenia, a new inflammatory disease

August 22, 2016

National Institutes of Health researchers have discovered a rare and sometimes lethal inflammatory disease - otulipenia - that primarily affects young children. They have also identified anti-inflammatory treatments that ...

Mcr-1 gene isolated from human for the first time in Brazil

August 8, 2016

August 8, 2016 - For the first time in Brazil, a particular antibiotic resistance mechanism conferring resistance to the important antibiotic, colistin, has been detected in a human. It was in a strain of Escherichia coli ...

Recommended for you

Quest to find the 'missing physics' at play in landslides

August 30, 2016

During the 1990s, Charles S. Campbell, now a professor in the Department of Aerospace and Mechanical Engineering at the University of Southern California, began exploring why large landslides flow great distances with apparently ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.