Securing America's power grid

June 27, 2006

Terrorists attack Colombia's electrical grid hundreds of times a year. What's to stop attacks on America's power lines? An Iowa State University research team led by Arun Somani, chair and Jerry R. Junkins professor of electrical and computer engineering, is working to develop a network of wireless sensors that could monitor the country's electricity transmission system.

While the sensors could pick up suspicious activity at power poles, they'd be especially useful at quickly locating any breakdowns. That could allow power companies to react in time to prevent power disruptions from cascading into blackouts. And the monitoring system could also help power companies quickly locate problems when severe weather tears down electrical lines.

With networks of sensors, "Power companies would have additional abilities to view their systems and that would assist in disaster recovery," Somani said.

America has a lot of transmission lines, substations and generators that could use some monitoring. The Department of Energy reported the country had 157,810 miles of transmission lines in 2004. And the department reported that America's power plants produced 3.97 billion megawatt hours of electricity in 2004.

The monitoring system depends on sensors housed in black boxes just a few inches across. Somani recently picked up one of the sensors inside Iowa State's Wireless and Sensor Networking Laboratory and showed off the electronics capable of watching out for conductor failures, tower collapses, hot spots and other extreme conditions. A tiny camera can also be mounted in the sensor to look for suspicious movements around power lines.

The project is supported by a $400,000 grant from the National Science Foundation and $150,000 from Iowa State's Information Infrastructure Institute.

The project's Iowa State research team also includes Manimaran Govindarasu, an associate professor of electrical and computer engineering; Murti Salapaka, an associate professor of electrical and computer engineering; and Zhengdao Wang, an assistant professor of electrical and computer engineering. Former Iowa State faculty member Vijay Vittal, now a professor of electrical engineering at Arizona State University, is also working on the project. Each of the researchers brings different specialties to the project.

And it's not an easy project, Somani said.

The researchers need to design a system that stands up to weather. They need to design sensors that can accurately monitor the power grid's electrical and mechanical characteristics. They need to find a way to monitor the area around electrical equipment for suspicious activity. They need to develop wireless communication networks so the sensors can send comprehensive data from far-flung areas to control centers. They need to design a diagnosis algorithm to accurately determine fault conditions and predict faults. They need to design a decision algorithm to reconfigure the power network to prevent or alleviate cascading failures. And they need to find ways to get electricity to the sensors because the electrical lines they're monitoring carry the wrong kind of power.

Somani said the researchers are making good progress on developing a prototype system. He said the research team is also starting to talk to power companies about the possibility of testing the system on the electrical grid. And he said it's an important project for national security.

"With the increasing threat of terrorism around the world, more attention is being paid to the security of the transmission infrastructure," says a summary of the project. "Experiences in countries like Columbia, which has faced as many as 200 terrorist attacks on its transmission infrastructure per year, demonstrate the vulnerability of the power system to these kinds of events."

Source: Iowa State University

Explore further: Plasmonics study suggests how to maximize production of 'hot electrons' for cheap, efficient metal-based solar cells

Related Stories

New material releases stored heat under weak pressure

July 14, 2015

Researchers at the University of Tokyo have discovered a new type of material which stores heat energy for a prolonged period, which they have termed a "heat storage ceramic." This new material can be used as heat storage ...

Researchers to test 3D-printed, autonomous 'SmartCarts'

July 10, 2015

A fleet of autonomous "SmartCarts"—high-tech, 3D-printed, low-speed electric vehicles—could one day zip around the University of Michigan's North Campus, taking students, professors and staff to class, labs and offices ...

Recommended for you

Sydney makes its mark with electronic paper traffic signs

July 28, 2015

Visionect, which is in the business of helping companies build electronic paper display products, announced that Sydney has launched e-paper traffic signs. The traffic signage integrates displays from US manufacturer E Ink ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.