New Tools for a Nanotechnology Workshop

May 25, 2006 feature
Pulling a nanowire from its substrate.
Pulling a nanowire from its substrate.

Until recently, nanoscale devices could only be crafted through chemical reactions or by pushing components together on a smooth surface. Researchers at the Technical University of Denmark have developed and demonstrated practical tools allowing the precise manipulation and assembly of complex, three-dimensional nanomachines.

Nanotechnology has been advancing steadily ever since the arrival of microscopes capable of imaging structures on the atomic scale. Once limited to taking still pictures, modern scanning electron microscopes (SEM) now provide real-time video and can even be used to weld two components together. Other techniques, such as scanning probe microscopy, are frequently used to push nanoscale structures together on a smooth surface. The construction of two-dimensional devices is therefore possible, but extending nanomachines into the third dimension has been a much more difficult prospect.

A sequence of images showing the grippers in action
A sequence of images showing the grippers in action. (a) approaching the wire, (b) opening the grippers, (c) clamping the wire, (d) sideways (shear) pull to disconnect, (e) separation of the wire from its substrate, (f) moving away from the substrate.

Complex, three-dimensional structures have been successfully assembled in solution, by coating each component with a chemically active substance that encourages it to bond with the right partner. This technique is not ideal, however, because adding extra chemicals may change the mechanical or electrical properties of the structure. In many cases it would be vastly preferable to build a new machine by picking up and placing individual components one by one, in exactly the order desired.

The Technical University of Denmark’s Department of Micro and Nanotechnology has dedicated itself to perfecting such ‘pick-and-place’ technology. While a considerable amount of research has already been devoted to the design of micrometer-sized tools, some of which are even commercially available, practical demonstrations of three-dimensional assembly are suspiciously absent. Professors Kristian Mølhave and Peter Bøggild, in conjunction with the department’s Nanointegration research group, have been working on this problem. Not only have they designed several new nanoscale tools, but they have also modeled their mechanical properties and demonstrated them in action.

The first figure shows one of their simpler designs, a ‘gripper’ that can be opened and closed by placing a small amount of static charge on the prongs. The force of its grip is only about a millionth of a Newton, but this is more than sufficient to overcome the natural adhesion of a nanowire to the surface it lies on.

Prior to this work, common wisdom held that nanoscale components would be just as likely to stick to the tools as to each other. “Most people thought it would not work at all, because of the strongly adhesive capillary and Van der Waals forces on the nanoscale”, Dr. Mølhave explains. “That’s exactly the kind of thing that made me want to try to do it.” His results speak for themselves. As the sequence of images in the second figure shows, adhesion to the tool is a problem that can be overcome.

A more advanced gripper prototype
A more advanced gripper prototype. The triple shafts both stabilize the structure and provide multiple points of control. The gripper can be opened and closed by placing electrostatic charge on a shaft, heating a shaft with a current, or a combination of the two approaches.

The tools coming out of Bøggild’s laboratory have continued to advance. Not only can they be fabricated en masse, but newer versions of the gripper have several activation modes. This allows a greater control over the applied force, as well as providing a channel for feedback to the tool’s operator. The grippers are also surprisingly easy to use! In high school demonstrations of the apparatus, students are picking and placing nanowires within an hour or two of being shown the equipment.

Mølhave’s enthusiasm for these developments is clear. “We have just taken the first steps from ‘poking around with a stick’ to having ‘Tools’ with more degrees of freedom and complexity,” he claims, going on to specify that a functional nanoscale workshop should really have a variety of equipment. Just as we have several kinds of screws and screwdrivers, nanoengineers of the future will want a variety of structural elements and specialized tools to manipulate each one. Robot actuators that can hold the tools and guide them with nanometer precision are already commercially available.

A fully functional workshop would allow scientists to design and assemble working prototypes of complex machines, as well as measure the properties of individual components much more easily and accurately. Mølhave speculates that this achievement is only a year or two away.

Then his real work can begin, for the creation of prototypes is clearly not enough. “Once we have this nano-workshop up and running,” Mølhave says, “we will be able to work towards the automation of assembly processes.” If he and his colleagues continue working at their present pace, the mass production of nanomachines may be closer than we think!

Kristian Mølhave, Thomas Wich, Axel Kortschack, & Peter Bøggild, “Pick-and-place nanomanipulation using microfabricated grippers”, Nanotechnology (2006) v. 17, pp. 2434-2441. This article is available online at

K. Mølhave and O. Hansen, “Electro-thermally actuated microgrippers with integrated force feedback”, Journal of Micromechanics and Microengineering (2005) v. 15, pp. 1265–1270.

By Ben Mathiesen, Copyright 2006; Images: Kristian Mølhave

Ben Mathiesen is a research astrophysicist and owner of the agency Physical Science Editing, which helps scientists and engineers around the world achieve native English writing standards in their publications.

Explore further: How biological motors and molecules can be used to measure magnetic materials

Related Stories

A new look at surface chemistry

June 17, 2015

For the first time in the long and vaunted history of scanning electron microscopy, the unique atomic structure at the surface of a material has been resolved. This landmark in scientific imaging was made possible by a new ...

Nanomaterial self-assembly imaged in real time

June 8, 2015

A team of researchers from UC San Diego, Florida State University and Pacific Northwest National Laboratories has for the first time visualized the growth of 'nanoscale' chemical complexes in real time, demonstrating that ...

Putting a new spin on plasmonics

May 7, 2015

Researchers at Finland's Aalto University have discovered a novel way of combining plasmonic and magneto-optical effects. They experimentally demonstrated that patterning of magnetic materials into arrays of nanoscale dots ...

Recommended for you

An engineered surface unsticks sticky water droplets

August 31, 2015

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets ...

Electrical circuit made of gel can repair itself

August 25, 2015

(—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

Scientists grow high-quality graphene from tea tree extract

August 21, 2015

(—Graphene has been grown from materials as diverse as plastic, cockroaches, Girl Scout cookies, and dog feces, and can theoretically be grown from any carbon source. However, scientists are still looking for a ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.