Staggering atoms sober up in physics detox cell

May 4, 2006

Using an entirely new technology, a research team from Umeå University in Sweden has succeeded in controlling and converting energy from the random movement of atoms. “You could say that we have found a detox cell where drunken atoms can sober up,” says physicist Peder Sjölund. The findings are being published in the journal Physical Review Letters.

We are surrounded by random, staggering, movements. We don’t notice it, but particles collide with each other in an uncontrolled manner in the air we breathe and in the milk we drink, for instance. This is called Brownian movement. This random movement also functions as an energy reservoir. This is something that is utilized by various systems, such as when proteins are transported in the body, so-called Brownian motors.

The Umeå scientists have developed an advanced laser technique for studying and controlling these movements. The staggering movements of atoms in a field of light can be captured in a type of detox cell made up of laser beams, where they can sober up. The staggering movement is converted there to movement in a specific direction.

“We can control this movement in three dimensions in regard to both velocity and direction,” says Peder Sjölund.

This technology will be able to provide new knowledge about how energy in living cells is converted from chemical energy to movement in molecular motors that are transported in cells. The underlying principle is very general and can also be applied in nanotechnology and for transporting information in super-rapid calculations in quantum computers, for example.

It may be utopian to be able to offer people access to free and inexhaustible energy by converting energy with this technology, and this will certainly not become a reality in our lifetime. Nevertheless, the Umeå scientists have shown that it is possible, though only in tiny systems.

Source: The Swedish Research Council

Explore further: Examining the fate of Fukushima contaminants

Related Stories

Examining the fate of Fukushima contaminants

August 18, 2015

An international research team reports results of a three-year study of sediment samples collected offshore from the Fukushima Daiichi Nuclear Power Plant in a new paper published August 18, 2015, in the American Chemical ...

Better together: graphene-nanotube hybrid switches

August 2, 2015

Graphene has been called a wonder material, capable of performing great and unusual material acrobatics. Boron nitride nanotubes are no slackers in the materials realm either, and can be engineered for physical and biological ...

Controlling interactions between distant qubits

July 23, 2015

A big part of the burgeoning science of quantum computation is reliably storing and processing information in the form of quantum bits, or qubits. One of the obstacles to this goal is the difficulty of preserving the fragile ...

Macroscopic quantum phenomena discovered in ice

July 21, 2015

(Phys.org)—Scientists have discovered an anomaly in the properties of ice at very cold temperatures near 20 K, which they believe can be explained by the quantum tunneling of multiple protons simultaneously. The finding ...

Trapped light orbits within an intriguing material

July 16, 2015

Light becomes trapped as it orbits within tiny granules of a crystalline material that has increasingly intrigued physicists, a team led by University of California, San Diego, physics professor Michael Fogler has found.

Recommended for you

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.