SSRL Aids Development of Plastic Electronics

May 4, 2006
SSRL Aids Development of Plastic Electronics
A plastic polymer conducts electricity much better when small crystals within the plastic polymer are aligned perpendicular to the surface. Image courtesy of Joe Kline, NIST

For close to a decade, researchers have been trying to improve the performance of plastic semiconductors to the level of amorphous silicon—the semiconductor used in low-cost electronics such as photovoltaic cells for solar power and thin-film transistors used in flat screen laptops and TVs.

Stanford Synchrotron Radiation Laboratory (SSRL) and Stanford University researchers have now shown that the electrical performance of plastic semiconductors can be controlled and improved with surface treatments. In their research, published in Nature Materials in March, they showed they could align the small crystals within the plastic polymer by applying a thin layer of organic molecules on to the surface. The highly-oriented crystals give the material better performance in conducting electricity. Researchers used x-ray scattering at SSRL to show the orientation of the crystals.

In a related paper, published in April's Nature Materials, Merck Chemicals in the United Kingdom developed a new polymer whose electrical mobility, related to conductivity, is the highest so far in a polymer, endowing the new polymer with performance comparable to amorphous silicon. SSRL, Stanford University and the Palo Alto Research Center characterized this new material, and found it has very highly-oriented crystals. "The structural properties of this new material are unprecedented for a polymer," said former Stanford graduate student Joe Kline, now a postdoctoral researcher at the National Institute of Standards and Technology.

Semiconducting polymers have many advantages over amorphous silicon: they are cheaper, faster and less energy-intensive to make; they can be dissolved in a solution and sprayed on, like ink from an inkjet printer; and they are flexible, an important trait for applications such as electronic paper.

Source: Stanford Linear Accelerator Center, by Heather Rock Woods

Explore further: Microscopic rake doubles efficiency of low-cost solar cells

Related Stories

Microscopic rake doubles efficiency of low-cost solar cells

August 13, 2015

Researchers from the Department of Energy's SLAC National Accelerator Laboratory and Stanford University have developed a manufacturing technique that could double the electricity output of inexpensive solar cells by using ...

Hard X-rays probe model fuel-cell catalyst

December 2, 2010

( -- Researchers at the Stanford Synchrotron Radiation Lightsource have developed a new, more powerful way to probe the behavior of a key component in hydrogen fuel cells. The group shone SSRL's high-energy X-rays ...

Semiconductor works better when hitched to graphene

February 20, 2015

Graphene – a one-atom-thick sheet of carbon with highly desirable electrical properties, flexibility and strength – shows great promise for future electronics, advanced solar cells, protective coatings and other uses, ...

Recommended for you

Nevada researchers trying to turn roadside weed into biofuel

November 26, 2015

Three decades ago, a University of Nevada researcher who obtained one of the first U.S. Energy Department grants to study the potential to turn plants into biofuels became convinced that a roadside weed—curly top gumweed—was ...

Glider pilots aim for the stratosphere

November 20, 2015

Talk about serendipity. Einar Enevoldson was strolling past a scientist's office in 1991 when he noticed a freshly printed image tacked to the wall. He was thunderstruck; it showed faint particles in the sky that proved something ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.