12-qubits reached in quantum information quest

May 8, 2006

In the drive to understand and harness quantum effects as they relate to information processing, scientists in Waterloo and Massachusetts have benchmarked quantum control methods on a 12-Qubit system. Their research was performed on the largest quantum information processor to date.

Theorists and experimentalists at the Institute for Quantum Computing and (IQC) and Perimeter Institute for Theoretical Physics (PI) in Waterloo, along with MIT, Cambridge, have presented an operational control method in quantum information processing extending up to 12 qubits. The team's research is available in Physical Review Letters (PRL 96, 170501 week ending 5 May, 2006) and describes the approaches, accuracy and scalability. Despite decoherence, the researchers reached a 12-coherence state and decoded it using liquid state nuclear magnetic resonance quantum information processors.

Raymond Laflamme, Executive Director at the Institute for Quantum Computing and Long Term Researcher at Perimeter Institute says - "…our experiment shows a high level of quantum control over the largest quantum register to date. It is an important step in implementing quantum information processing on larger and larger devices. This is an important milestone towards harnessing the quantum world."

The team's findings set a new algorithmic benchmark in a global effort to exploit quantum properties in order to support entirely new modes of information processing – such as quantum computers with an ability to solve certain types of incredibly complex problems that no modern day computer can approach. The basic principles behind today's computers and other information processing devices (known as "classical" systems) were developed in the 1930s. However, today's theories governing the calculation, storage and transmission of information are at a crossroads. As wires and logic gates become ever smaller, quirky quantum phenomena in the tiny world of atoms take over and impede the efficient flow of information. Select groups of international theorists and experimentalists - including those who are clustering in Waterloo, Ontario - are trying to understand and harness the phenomena and, with this latest research, have set a new standard by controlling a 12-Qubit system.

Source: Perimeter Institute for Theoretical Physics

Explore further: Nanotweezer is new tool to create advanced plasmonic technologies

Related Stories

Quantum process demonstrates superposition of ordered events

November 4, 2015

(Phys.org)—In a quantum superposition, a quantum object can be in two incompatible states at the same time, which is famously illustrated by Schrödinger's dead-and-alive cat. Recent research has shown that it's possible ...

SLAC theorist explains quantum gravity

November 19, 2015

Our world is ruled by four fundamental forces: the gravitational pull of massive objects, the electromagnetic interaction between electric charges, the strong nuclear interaction holding atomic nuclei together and the weak ...

Researchers take two big steps toward quantum computing

November 6, 2015

(Phys.org)—"Spooky action at a distance," Einstein's famous, dismissive characterization of quantum entanglement, has long been established as a physical phenomenon, and researchers are keen to develop practical applications ...

Recommended for you

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.