12-qubits reached in quantum information quest

May 8, 2006

In the drive to understand and harness quantum effects as they relate to information processing, scientists in Waterloo and Massachusetts have benchmarked quantum control methods on a 12-Qubit system. Their research was performed on the largest quantum information processor to date.

Theorists and experimentalists at the Institute for Quantum Computing and (IQC) and Perimeter Institute for Theoretical Physics (PI) in Waterloo, along with MIT, Cambridge, have presented an operational control method in quantum information processing extending up to 12 qubits. The team's research is available in Physical Review Letters (PRL 96, 170501 week ending 5 May, 2006) and describes the approaches, accuracy and scalability. Despite decoherence, the researchers reached a 12-coherence state and decoded it using liquid state nuclear magnetic resonance quantum information processors.

Raymond Laflamme, Executive Director at the Institute for Quantum Computing and Long Term Researcher at Perimeter Institute says - "…our experiment shows a high level of quantum control over the largest quantum register to date. It is an important step in implementing quantum information processing on larger and larger devices. This is an important milestone towards harnessing the quantum world."

The team's findings set a new algorithmic benchmark in a global effort to exploit quantum properties in order to support entirely new modes of information processing – such as quantum computers with an ability to solve certain types of incredibly complex problems that no modern day computer can approach. The basic principles behind today's computers and other information processing devices (known as "classical" systems) were developed in the 1930s. However, today's theories governing the calculation, storage and transmission of information are at a crossroads. As wires and logic gates become ever smaller, quirky quantum phenomena in the tiny world of atoms take over and impede the efficient flow of information. Select groups of international theorists and experimentalists - including those who are clustering in Waterloo, Ontario - are trying to understand and harness the phenomena and, with this latest research, have set a new standard by controlling a 12-Qubit system.

Source: Perimeter Institute for Theoretical Physics

Explore further: Organic semiconductors get weird at the edge

Related Stories

Organic semiconductors get weird at the edge

October 6, 2015

As the push for tinier and faster electronics continues, a new finding by scientists at the University of British Columbia (UBC) and Monash University could help inform the design of the next generation of cheaper, more efficient ...

Scientists produce status check on quantum teleportation

September 30, 2015

Mention the word 'teleportation' and for many people it conjures up "Beam me up, Scottie" images of Captain James T Kirk. But in the last two decades quantum teleportation – transferring the quantum structure of an object ...

Brightness-equalized quantum dots improve biological imaging

October 5, 2015

Researchers at the University of Illinois at Urbana-Champaign have introduced a new class of light-emitting quantum dots (QDs) with tunable and equalized fluorescence brightness across a broad range of colors. This results ...

Recommended for you

Light-optics research could improve medical imaging

October 13, 2015

A team of researchers, including The University of Queensland's Dr Joel Carpenter, has developed echo-less lights that could improve medical imaging inside the body, leading to less-intrusive surgery.

Just a touch of skyrmions

October 13, 2015

Ancient memory devices such as handwriting were based on mechanical energy—but in the modern world they have given way to devices based generally on electrical manipulation.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.