Engineers discover predictor of mobility for fluids at nano-scale

May 8, 2006

Chemical engineers at The University of Texas at Austin have discovered a new way to predict the mobility of confined fluids at nanometer scales. At these scales, often just a few molecules across, fluids exhibit significantly different properties than at the macroscopic level.

The ability to predict these changes has applications in fields such as cell biology and geophysics, as well as important implications for the design of nanoscale devices.

The research by graduate student Jeetain Mittal and Dr. Thomas Truskett, assistant professor in the Department of Chemical Engineering at The University of Texas at Austin, along with Dr. Jeffrey Errington of the University at Buffalo, SUNY, appears in the May 5 issue of Physical Review Letters.

These results will help engineers understand how a variety of confined fluid systems function, from the performance of new materials for chemical separation and environmental remediation to transport processes in biological membranes. The discovery also provides a way to study the behavior of fluids in nanodevices, such as miniaturized “lab on a chip” tools for biomedical and analytical chemistry applications.

Confining fluids in very small, nanometer-scale channels can affect how the molecules pack together, how they withstand compression, and their ability to rapidly mix or flow. Changes to the first two properties are relatively well understood, but predicting the third, which is connected to the mobility of the molecules, has proven elusive.

“One of the most dramatic changes you see going from macroscopic scales to nanometer scales is that materials can actually change their state,” Truskett said. “A solid may become liquid upon confinement. If that solid material is a bonding agent and it turns into a runny fluid, it doesn’t do its job. Likewise, a liquid can become a solid when confined to small scales. If it is a lubricant, it fails. So in the engineering of nanoscale devices, these kinds of changes can have potentially catastrophic effects.”

In a bulk fluid, such as a glass of water, fluid molecules interact primarily with other fluid molecules. Relatively few are in contact with the surface of the container. At nanometer scales, however, a much higher proportion of molecules come in contact with the confining material. This surface interaction can significantly alter fluid properties, including molecular mobility.

The key to successfully predicting changes to mobility in a confined fluid, the researchers discovered, is the relationship between mobility and excess entropy.

“One way to think about how mobility relates to entropy is to think of entropy as measuring a sort of randomness at the molecular level,” Truskett said. “In a gas, where the molecules are randomly distributed, entropy is high and the gas mixes readily. In a solid, the molecules are aligned in a regular spatial pattern; there is little randomness and the solid barely mixes at all. Our discovery is that while both excess entropy and mobility of a fluid are affected by confinement, the relationship between the two quantities essentially remains the same down to very small scales.”

Because scientists already have reliable methods for predicting how confinement will affect excess entropy, they can now use this information together with the group’s findings to predict how confinement will affect fluid mobility.

The group performed computer simulations to study the behavior of fluids in highly restrictive channels with different shapes and boundary interactions. They were able to successfully model changes to fluid mobility and entropy in these conditions, a critical breakthrough that will allow engineers to learn how these changes occur while avoiding the difficult task of gathering experimental data on such small scales.

Source: University of Texas at Austin

Explore further: Cells get noisy in crowded environments

Related Stories

Cells get noisy in crowded environments

October 27, 2015

Bacteria are incredibly small, yet pack an enormous diversity of different molecules such as DNA, mRNA and proteins. Chemists from Radboud University Nijmegen, Eindhoven and Paris now show for the first time that random variations ...

New form of sulfur discovered in geological fluids

February 28, 2011

Sulfur is the sixth most abundant element on Earth and plays a key role in many geological and biological processes. A French-German team including CNRS and the Université Paul Sabatier has identified, on the basis of ...

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.