Nanotube Sandwiches Could Lead To Better Composite Materials

May 8, 2006
A piece of ceramic cloth woven from silicon carbide fibers
A piece of ceramic cloth woven from silicon carbide fibers.

By stacking layers of ceramic cloth with interlocking nanotubes in between, a team of researchers has created new composites with significantly improved properties compared to traditional materials. The “nanotube sandwiches,” which are described in the May 7 online edition of the journal Nature Materials, could find use in a wide array of structural applications.

“Nanotubes are a very versatile material with absolutely fascinating physical properties, all the way from ballistic conduction to really interesting mechanical behavior,” says Pulickel Ajayan, the Henry Burlage Professor of Materials Science and Engineering at Rensselaer and a lead author of the paper, along with colleagues at the University of Hawaii at Manoa.

The same ceramic cloth with nanotubes grown perpendicular to the surface of the fibers
The same ceramic cloth with nanotubes grown perpendicular to the surface of the fibers. Photo by University of Hawaii/Vinod Veedu

Some fundamental issues, however, have kept researchers from realizing the full potential of nanotubes, particularly when combining them with other materials to make composites. The interface between the materials is not as strong as one might expect, Ajayan notes, because it is difficult to disperse nanotubes and to align them in an orderly way.

Ajayan and his colleagues have pioneered a process to help overcome these difficulties, and they are putting it to use in a wide variety of applications. For the current project, the researchers are applying the process to a new area: reinforced composite fabrics made from woven ceramic fibers. These materials have been used for decades in structural applications, but they tend to perform poorly in terms of “through-thickness,” or the ability of a material to respond to forces applied perpendicular to the fabric-stacking direction, according to Ajayan.

“We have demonstrated that these through-thickness properties can be improved by adding nanotube Velcro-like structures between the layers,” says Mehrdad Ghasemi-Nejhad, professor of mechanical engineering at Hawaii and a lead author of the paper. To make the new materials, the researchers deposit a forest of carbon nanotubes across the surface of a cloth woven from fibers of silicon carbide — a ceramic compound made from silicon and carbon. The fabric layers are infiltrated with a high-temperature epoxy matrix, and then several layers of cloth are stacked on top of each other to form a three-dimensional composite “sandwich,” with interlocking nanotubes acting to fasten the layers together.

“This is a very nice example of how to use nanotubes to solve major existing problems, rather than going all-out to make composites based on nanotubes alone, which has proven to be a very challenging task,” Ajayan says. The team has successfully made cloths up to roughly five inches by two inches, and the process is easily scalable to make larger materials, they say.

The researchers ran several experiments to test the new material’s properties, and they found that the interlocking nanotubes provided remarkable improvements in strength and toughness under various loading conditions. The materials performed extremely well in fracture tests, and they demonstrated a five-fold increase in damping — or the ability to dissipate energy — over the original ceramic composites without nanotubes included. This suggests that the new composites could be used in many applications where mechanical properties are important, from automobile engines to golf club shafts.

Tests also showed that both the thermal and electrical conductivity of the new composites were significantly improved, which means that they could potentially be employed as sensors to monitor crack propagation in various structures, the researchers note.

The University of Hawaii at Manoa team included Vinod Veedu, a graduate student at the Hawaii Nanotechnology Laboratory; Anyuan Cao, assistant professor of mechanical engineering; and Kougen Ma, associate director of the Intelligent and Composite Materials Laboratory. Several other Rensselaer researchers also participated in the project: Caterina Soldano, a doctoral student in physics, applied physics, and astronomy; Xuesong Li, a doctoral student in materials science and engineering; and Swastik Kar, a postdoctoral researcher in materials science and engineering.

Ajayan received funding for the project from the Focus Center-New York, which is part of the Interconnect Focus Center; and Rensselaer’s National Science Foundation-funded Nanoscale Science and Engineering Center for the Directed Assembly of Nanostructures.

Source: Rensselaer Polytechnic Institute

Explore further: Purifying contaminated water with crab shells

Related Stories

Purifying contaminated water with crab shells

August 25, 2015

Copper and cadmium exist naturally in the environment, but human activities including industrial and agricultural processes can increase their concentrations. At high concentrations, copper can cause unwanted health effects ...

Biological tools create nerve-like polymer network

August 24, 2015

Using a succession of biological mechanisms, Sandia National Laboratories researchers have created linkages of polymer nanotubes that resemble the structure of a nerve, with many out-thrust filaments poised to gather or send ...

Better together: graphene-nanotube hybrid switches

August 2, 2015

Graphene has been called a wonder material, capable of performing great and unusual material acrobatics. Boron nitride nanotubes are no slackers in the materials realm either, and can be engineered for physical and biological ...

Recommended for you

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

Graphene made superconductive by doping with lithium atoms

September 2, 2015

(Phys.org)—A team of researchers from Germany and Canada has found a way to make graphene superconductive—by doping it with lithium atoms. In their paper they have uploaded to the preprint server arXiv, the team describes ...

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.