Researchers develop new method to monitor aircraft lifespan

May 5, 2006

Carnegie Mellon University Professor Anthony D. Rollett has developed a new computational method that may help track the lifespan of U.S. Navy aircraft.

"We have created a new way of creating three-dimensional computer models of the materials used in aircraft to help us determine when an aircraft is ready for an overhaul or when it should be retired,'' said Rollett, a professor in the Materials Science and Engineering Department.

At present, many Navy aircraft are more than 30 years old, so military officials are seeking a more precise system for reducing the risk and cost associated with ensuring the safety of U.S. military aircraft.

"We have been collaborating for more than two years with Carnegie Mellon's Professor Rollett on the problem of predicting the fatigue-limited lifetime of structural components like those found in aircraft,'' said John M. Papazian, a research scientist at Northrop Grumman Corp., one of the nation's leading defense contractors.

Essentially, what Carnegie Mellon researchers have done is to refine a system already developed in collaboration with Pittsburgh-based Alcoa to map the microstructure of materials into a three-dimensional digital material. The digital material is akin to a computer program and gives researchers the ability to conduct unlimited testing of the materials using computational methods. The novelty of the approach lies in being able to create many different examples of the material in the computer that can capture the variability of the material. This allows the results to be used in the statistically based systems that are used for tracking the lifetime of an aircraft.

"We are looking for any kind of defect in critical airplane parts,'' Rollett said. For example, moisture combined with dirt or salt creates perfect conditions for corrosion of airplane parts.

Industry analysts also point out that many Navy aircraft have to endure repeated aircraft carrier landings, which some aviation experts call "controlled crashes'' that put significant stress on airplane frames.

Source: Carnegie Mellon University

Explore further: Designing ice repellent materials

Related Stories

Designing ice repellent materials

November 4, 2015

Materials that actively repel water and ice very strongly are sought after by the aviation industry and for many other technical applications. ETH researchers have now found out how to specifically design the rigid surfaces ...

Transformation needed in thermal management research

November 13, 2015

Researchers are recommending changes in how to study rapidly changing temperatures in complex systems such as aircraft and power plants, a transformation that could bring advances for applications ranging from fighter jets ...

Team showcases the biggest 3-D printing machine for industry

November 5, 2015

The Basque Autonomous Community is once again spearheading R&D&i applied to the industrial base to enable companies to be more competitive, not only by improving productivity but also by creating new products. The first machine ...

Recommended for you

Glider pilots aim for the stratosphere

November 20, 2015

Talk about serendipity. Einar Enevoldson was strolling past a scientist's office in 1991 when he noticed a freshly printed image tacked to the wall. He was thunderstruck; it showed faint particles in the sky that proved something ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.