How Did Continents Split? Geology Study Shows New Picture

May 23, 2006
Earth map

Like pieces in a giant jigsaw puzzle, continents have split, drifted and merged again many times throughout Earth’s history, but geologists haven’t understood the mechanism behind the moves. A new study now offers evidence that continents sometimes break along preexisting lines of weakness created when small chunks of land attach to a larger continent.

The paper — the cover story in the latest issue of Geology, the journal of the Geological Society of America — is the first to provide an explanation for the breaking patterns of continental plates, and uses the formation of an ocean about 500 million years ago to demonstrate that principle.

“We asked the question, ‘Why do oceans open where they do, and why does a continent choose to break where it does?’” said Damian Nance, Ohio University professor of geological sciences and co-author of the study.

Throughout Earth’s history, there have been six major continental assembly and breakup events, about 500 million years apart. Currently the Earth is in breakup cycle in which the Atlantic and Indian oceans are opening, Nance said.

The new study found that continents sometimes break along preexisting lines of weakness created during earlier continental collisions. Geologists had long suspected that break lines were created by the attachment of pieces onto larger land masses, but Nance and his co-authors were the first group to be able to prove this theory.

About 650 million years ago – when the first jellyfish evolved – North America, South America and Africa were stuck together as one large continent called Gondwana, with some smaller islands floating on a neighboring continental plate. Over time, these islands collided with the large group of continents and were attached to it in a process called accretion.

About 525 million years ago, that land mass broke apart, with North America on one side and South America, Africa and the small island pieces on the other. The two plates drifted apart, forming the Iapetus Ocean.

Twenty-five million years later – at the time of the first fish and land plants – the strip of land that used to be the small islands broke off South America and Africa and began moving across Iapetus towards North America. This movement closed the Iapetus Ocean while at the same time opening the Rheic Ocean.

Nance and his co-authors focused on these two particular breaks because they occurred along a “line of weakness” – namely the spot where the small islands had attached to the larger land mass. As the internal structure of the continent was already less stable there than it was across the two solid outside pieces, the continent broke along this preexisting line.

The scientists used geochemical “fingerprinting” to show that the small pieces of land, which today are found in the Appalachians, were originally created in an ocean. The radioactive element Samarium, which breaks down into various types of the element Neodymium, was used to determine the age of the rock (about one billion years). The amount of each element was typical of rock created in the ocean, away from larger continental masses.

The research is part of Nance’s larger interest in the Rheic Ocean, which he has been studying for more than a decade. He is part of a multinational UNESCO project to examine the history of this ocean and has conducted work in Mexico and Europe. The present study was funded by the National Science Foundation, the Natural Sciences and Engineering Council of Canada, the Spanish Ministry of Education and Science and a Mexican Papiit Grant.

The study’s lead author was J. Brendan Murphy of St. Francis Xavier University, Antigonish, Canada. In addition to Nance, the other authors were Gabriel Gutierrez-Alonso of the Universidad the Salamanca, Salamanca, Spain; Javier Fernandez-Suarez of the Universidad Complutense, Madrid, Spain; J. Duncan Keppie of the Universidad Nacional Autonoma de Mexico, Mexico City, Mexico; Cecilio Quesada of IGME, Madrid, Spain; Rob A. Strachan of the University of Portsmouth, Portsmouth, Great Britain; and Jarda Dostal of St. Mary’s University, Halifax, Canada.

Source: Ohio University

Explore further: Image: Cambodian rivers from orbit

Related Stories

Study reveals how eastern US forests came to be

9 hours ago

Plant hunters traveling between North America and Asia in the 1800s noticed a bizarre pattern: collections they brought back from China and Japan were strikingly similar in their leaves, flowers and fruits ...

El Nino will be 'substantial' warn Australian scientists

May 12, 2015

Australian scientists Tuesday forecast a "substantial" El Nino weather phenomenon for 2015, potentially spelling deadly and costly climate extremes, after officially declaring its onset in the tropical Pacific.

Recommended for you

Image: Cambodian rivers from orbit

6 hours ago

A flooded landscape in Cambodia between the Mekong River (right) and Tonlé Sap river (left) is pictured by Japan's ALOS satellite. The centre of this image is about 30 km north of the centre of the country's ...

Image: Agricultural fires in Angola, West Africa

18 hours ago

The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite collected this natural-color image which detected dozens of fires burning in southwestern Africa on May 21, 2015. The location, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.