Carbon-based quantum dots could mean 'greener' technology in medicine, biology

May 23, 2006
Bacterial spores illuminated with carbon-based quantum dots
Microscope image of bacterial spores (Bacillus subtilis) labeled with luminescent carbon nanoparticles. B. subtilis serves as a common model for anthrax research. These carbon nanoparticles, or carbon dots, could lead to safer, disposable biosensors to detect biological warfare agents. Measurement shown is 5 micrometers. Image courtesy of Dr. Ya-Ping Sun of Clemson University

Chemists at Clemson University say they have developed a new type of quantum dot that is the first to be made from carbon. Like their metal-based counterparts, these nano-sized "carbon dots" glow brightly when exposed to light and show promise for a broad range of applications, including improved biological sensors, medical imaging devices and tiny light-emitting diodes (LEDs), the researchers say.

The development, which could help broaden the use of quantum dot technologies, is described in a research communications published online today by the Journal of the American Chemical Society. The paper will appear in the journal's June 7 print edition.

The carbon-based quantum dots show less potential for toxicity and environmental harm and have the potential to be less expensive than metal-based quantum dots, the scientists say. Cheap disposable sensors that can detect hidden explosives and biological warfare agents such as anthrax also are among the possibilities envisioned by the researchers.

"Carbon is hardly considered to be a semiconductor, so luminescent carbon nanoparticles are very interesting both fundamentally and practically," says study leader Ya-Ping Sun, Ph.D., a chemist at the university, located in Clemson, S.C. "It represents a new platform for the development of luminescent nanomaterials for a wide range of applications."

Quantum dots have generated much interest in recent years, especially for potential applications in biology and medicine. These tiny particles -- thousands of times smaller than the width of a human hair -- have been developed from compounds composed of lead, cadmium and, more recently, silicon. But these materials have raised concerns over potential toxicity and environmental harm. As a result, scientists have begun to look for more benign compounds for making quantum dots.

Researchers have known for some time that carbon nanoparticles, due partly to their enormous surface area, have unusual chemical and physical properties quite different from their bulk form. Using nanoparticles produced from graphite, Sun and his associates demonstrated that when these carbon nanoparticles are covered with special polymers, they glow brightly when exposed to light, behaving as tiny light bulbs. The dots glow continuously as long as a light source is present, they say.

The scientists believe that this photoluminescence may be due to the presence of "pockets" or holes on the surface of the carbon dots that trap energy. The polymer coating acts as a "molecular band-aid," enabling light emission from the inside of the polymer casing, they say. Scientists believe that metal-based quantum dots emit light by a somewhat different mechanism.

The two-sided polymer coating allows researchers to attach antibodies or other labeling materials to the carbon dot, says Sun. This could lead to improved dyes for medical imaging and also the development of sensors that light up in the presence of a target, such as anthrax or even food-borne pathogens. In lab studies, the researchers successfully labeled anthrax-like spores with luminescent carbon dots, resulting in glowing spores that were easily viewed under a microscope.

Source: American Chemical Society

Explore further: Nanotechnology inspires next-generation dental materials

Related Stories

Nanotechnology inspires next-generation dental materials

October 19, 2015

Have a cavity? Ask your dentist about filling it with a mixture of nanoparticles including silica and zirconia. These white fillings (known as nano-composite resins) resemble teeth better than their metal alternatives and ...

Graphene quantum dots: The next big small thing

January 12, 2012

A Rice University laboratory has found a way to turn common carbon fiber into graphene quantum dots, tiny specks of matter with properties expected to prove useful in electronic, optical and biomedical applications.

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.