Winter Sea Ice Fails to Recover, Down to Record Low

April 6, 2006
Winter Sea Ice Fails to Recover, Down to Record Low
March 2006 mean sea ice extent, indicated by the red dot, is 300,000 square kilometers (115,860 square miles) less than the 2005 record, and 1.2 million square kilometers (463,000 square miles) below the 1979-2000 mean.

Scientists at NSIDC announced that March 2006 shows the lowest Arctic winter sea ice extent since the beginning of the satellite record in 1979 (see Figures 1 and 2). Sea ice extent, or the area of ocean that is covered by at least 15 percent ice, was 14.5 million square kilometers (5.60 million square miles) for this March, as compared to 14.8 million square kilometers (5.72 million square miles) for March 2005, the previous record.

The Arctic sea ice shrinks during the summer and grows, or recovers, during the winter. The ice reaches its maximum extent during March, with a long-term (1979-2000) monthly mean extent of 15.7 million square kilometers (6.06 million square miles). Winter sea ice extent has begun to show a significant downward trend over the past four years.

However, the winter recovery trend is not as striking as the sea ice minimum trend (see the press release Sea Ice Decline Intensifies, 28 September 2005). Changes in the sea ice minimum extent are especially important because more of the sun's energy reaches Earth's surface during the Arctic summer than during the Arctic winter. Sea ice reflects much of the sun's radiation back into space, whereas dark ice-free ocean water absorbs more of the sun's energy. So, reduced sea ice during the sunnier summer months has more of an impact on the Arctic's overall energy balance than reduced ice in the winter.

The lower winter extents are still important, however, because they reflect the pattern of reduced sea ice that scientists have already seen. Low winter recovery means that the ice is freezing up later in the fall and growing at a slower pace in the winter.

Walt Meier of NSIDC notes, "Poor winter recovery of the sea ice leads to less new ice growth and thinner ice. The weaker the ice at the end of winter, the more easily it melts the following summer."

Source: National Snow and Ice Data Center

Explore further: Lake ecologists see winter as a key scientific frontier

Related Stories

Lake ecologists see winter as a key scientific frontier

November 28, 2016

As long as ecologists have studied temperate lakes, the winter has been their off-season. It's difficult, even dangerous, to look under the ice, and they figured plants, animals and algae weren't doing much in the dark and ...

Arctic sea-ice growth slower than ever

November 30, 2016

ESA's CryoSat satellite has found that the Arctic has one of the lowest volumes of sea ice of any November, matching record lows in 2011 and 2012. Early winter growth of ice in the Arctic has been about 10% lower than usual.

Alaska biologists research mystery of declining caribou herd

November 29, 2016

The size of a large caribou herd in Alaska's Arctic region has dropped by more 50 percent over the last three years, and researchers who have tentatively ruled out hunting and predation as significant factors for the decline ...

Recommended for you

New studies take a second look at coral bleaching culprit

December 7, 2016

Scientists have called superoxide out as the main culprit behind coral bleaching: The idea is that as this toxin build up inside coral cells, the corals fight back by ejecting the tiny energy- and color-producing algae living ...

Uncovering the secrets of water and ice as materials

December 7, 2016

Water is vital to life on Earth and its importance simply can't be overstated—it's also deeply rooted within our conscience that there's something extremely special about it. Yet, from a scientific point of view, much remains ...

Swiss unveil stratospheric solar plane

December 7, 2016

Just months after two Swiss pilots completed a historic round-the-world trip in a Sun-powered plane, another Swiss adventurer on Wednesday unveiled a solar plane aimed at reaching the stratosphere.

Giant radio flare of Cygnus X-3 detected by astronomers

December 7, 2016

(Phys.org)—Russian astronomers have recently observed a giant radio flare from a strong X-ray binary source known as Cygnus X-3 (Cyg X-3 for short). The flare occurred after more than five years of quiescence of this source. ...

Dark matter may be smoother than expected

December 7, 2016

Analysis of a giant new galaxy survey, made with ESO's VLT Survey Telescope in Chile, suggests that dark matter may be less dense and more smoothly distributed throughout space than previously thought. An international team ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.