Simulation Breakthrough: When Black Holes Collide

Apr 18, 2006
Merging Black Holes in Abell 400
Scientists are watching two supermassive black holes spiral towards each other near the center of a galaxy cluster named Abell 400. Shown in this X-ray/radio composite image are the multi-million degree radio jets emanating from the black holes. Credit: X-ray: NASA/CXC/AIfA/D.Hudson & T.Reiprich et al.; Radio: NRAO/VLA/NRL

NASA scientists have reached a breakthrough in computer modeling that allows them to simulate what gravitational waves from merging black holes look like. The three-dimensional simulations, the largest astrophysical calculations ever performed on a NASA supercomputer, provide the foundation to explore the universe in an entirely new way.

According to Einstein's math, when two massive black holes merge, all of space jiggles like a bowl of Jell-O as gravitational waves race out from the collision at light speed.

Previous simulations had been plagued by computer crashes. The necessary equations, based on Einstein's theory of general relativity, were far too complex. But scientists at NASA's Goddard Space Flight Center in Greenbelt, Md., have found a method to translate Einstein's math in a way that computers can understand.

"These mergers are by far the most powerful events occurring in the universe, with each one generating more energy than all of the stars in the universe combined. Now we have realistic simulations to guide gravitational wave detectors coming online," said Joan Centrella, head of the Gravitational Astrophysics Laboratory at Goddard.

The simulations were performed on the Columbia supercomputer at NASA's Ames Research Center near Mountain View, Calif. This work appears in the March 26 issue of Physical Review Letters and will appear in an upcoming issue of Physical Review D. The lead author is John Baker of Goddard.

Upcoming Mission: LISA
The Laser Interferometer Space Antenna consists of three spacecraft orbiting the sun in a triangular configuration, separated from each other by five million kilometers. Each spacecraft will contain freely falling "proof masses" protected from all other forces except for gravity. The relative motion of the masses can be measured by combining laser beams shining between the spacecraft. Passing gravitational waves will ripple space and time, revealing their presence by altering the motion of the proof masses. Credit: NASA

Similar to ripples on a pond, gravitational waves are ripples in space and time, a four-dimensional concept that Einstein called spacetime. They haven't yet been directly detected.

Gravitational waves hardly interact with matter and thus can penetrate the dust and gas that blocks our view of black holes and other objects. They offer a new window to explore the universe and provide a precise test for Einstein's theory of general relativity. The National Science Foundation's ground-based Laser Interferometer Gravitational-Wave Observatory and the proposed Laser Interferometer Space Antenna, a joint NASA - European Space Agency project, hope to detect these subtle waves, which would alter the shape of a human from head to toe by far less than the width of an atom.

Black hole mergers produce copious gravitational waves, sometimes for years, as the black holes approach each other and collide. Black holes are regions where gravity is so extreme that nothing, not even light, can escape their pull. They alter spacetime. Therein lies the difficulty in creating black hole models: space and time shift, density becomes infinite and time can come to a standstill. Such variables cause computer simulations to crash.

These massive, colliding objects produce gravitational waves of differing wavelengths and strengths, depending on the masses involved. The Goddard team has perfected the simulation of merging, equal-mass, non-spinning black holes starting at various positions corresponding to the last two to five orbits before their merger.

Columbia Supercomputer
Ranked the fourth fastest supercomputer in the world on the November 2005 Top500 list, Columbia has increased the NASA’s total high-end computing, storage, and network capacity tenfold. This has enabled advances in science not previously possible on NASA’s high-end systems. It sits at the NASA Advanced Supercomputing (NAS) Facility at the Ames Research Facility. It consists of a 10,240-processor SGI Altix system comprised of 20 nodes, each with 512 Intel Itanium 2 processors, and running a Linux operating system. Credit: Trower, NASA

With each simulation run, regardless of the starting point, the black holes orbited stably and produced identical waveforms during the collision and its aftermath. This unprecedented combination of stability and reproducibility assured the scientists that the simulations were true to Einstein's equations. The team has since moved on to simulating mergers of non-equal-mass black holes.

Einstein's theory of general relativity employs a type of mathematics called tensor calculus, which cannot easily be turned into computer instructions. The equations need to be translated, which greatly expands them. The simplest tensor calculus equations require thousands of lines of computer code. The expansions, called formulations, can be written in many ways. Through mathematical intuition, the Goddard team found the appropriate formulations that led to suitable simulations.

Progress also has been made independently by several groups, including researchers at the Center for Gravitational Wave Astronomy at the University of Texas, Brownsville, which is supported by the NASA Minority University Research and Education Program.

Source: NASA

Explore further: Defining a national standard for dynamic pressure waves

Related Stories

Dedication of Advanced LIGO

May 19, 2015

The Advanced LIGO Project, a major upgrade that will increase the sensitivity of the Laser Interferometer Gravitational-wave Observatories instruments by a factor of 10 and provide a 1,000-fold increase in the number of astrophysical ...

Chandra suggests black holes gorging at excessive rates

Apr 30, 2015

A group of unusual giant black holes may be consuming excessive amounts of matter, according to a new study using NASA's Chandra X-ray Observatory. This finding may help astronomers understand how the largest ...

Extremely young stellar clump in the distant universe

May 15, 2015

As part of an observing program carried out with the Subaru Telescope and the Hubble Space Telescope, a group of researchers from the Service d'Astrophysique- Laboratoire AIM of CEA-IRFU led by Anita Zanella ...

Magnetar near supermassive black hole delivers surprises

May 14, 2015

In 2013, astronomers announced they had discovered a magnetar exceptionally close to the supermassive black hole at the center of the Milky Way using a suite of space-borne telescopes including NASA's Chandra ...

Recommended for you

Defining a national standard for dynamic pressure waves

2 minutes ago

In recent years, the physical damage done by pressure waves – such as traumatic brain injuries from explosives sustained by military personnel in the Middle East – has become an increasingly urgent public ...

Shedding light on untapped information in photons

1 hour ago

Conventional optical imaging systems today largely limit themselves to the measurement of light intensity, providing two-dimensional renderings of three-dimensional scenes and ignoring significant amounts ...

The art of hand-polishing precision optics

2 hours ago

Growing up in a household of artists and engineers, Peter Thelin was destined for a career in which artistry mattered. Only for him, art has come in the form of manipulating the shapes, sizes and qualities of optics. And ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.