Scientists chart rapid advances of fluorescent tools for life-science research

April 13, 2006

An interdisciplinary team of biological imaging experts from the University of California, San Diego has published a review of fluorescent imaging technologies and underscored the importance of those technologies to major advances in the life sciences. The article--"The Fluorescent Toolbox for Assessing Protein Location and Function"--is the cover story in the April 14 issue of the journal Science.

"Fluorescent imaging is critical to the observation of dynamic processes in living systems," said lead author Ben Giepmans, a research scientist in the UCSD-based National Center for Microscopy and Imaging Research (NCMIR). "Some of these techniques now also allow researchers to localize the responsible molecular machine in situ by electron microscopy."

Giepmans' co-authors on the Science paper include NCMIR director and UCSD School of Medicine neurosciences professor Mark Ellisman, pharmacology project scientist Stephen Adams, and Roger Tsien, professor of pharmacology, chemistry and biochemistry. The National Institutes of Health and the Howard Hughes Medical Institute supported work directly related to this review.

In their survey, the scientists contrasted the characteristic benefits and limitations of many new classes of fluorescent probes for studying proteins, including quantum dots, fluorescent proteins, and some genetic tags. Color-rich photomicrographs now routinely appear in scientific journals to illustrate dynamic biochemical processes. Those processes range from the expression of a specific gene to the redistribution of protein within a living cell.

Progress in developing new fluorescent probes over the last decade has been dramatic. "Whole new classes of fluorescent dyes, fluorescent proteins, and other hybrid probes are being engineered to illuminate specific biochemical structures and processes within living cells," said Ellisman. "They also make possible the direct correlated imaging of the underlying molecular complexes at higher resolution by electron microscopy."

Fluorescence imaging is rapidly becoming a biochemist's tool of choice for studying processes within living cells. Its rapid expansion is partially tied to a synergy of developments, including the increasing ease of implementing innovative targeting strategies to key cell metabolites and structures. Concomitant advances in instrumentation and data analysis are enabling scientists to identify and quantify dynamic biochemical processes of living cells under light and electron microscopes. Fluorescence techniques are being adapted for clinical and biochemical assays like biopsies and high-throughput drug screening, and are just beginning to find wider application in functional assays of living cells and animals.

Source: University of California - San Diego

Explore further: Biomedical imaging at one-thousandth the cost

Related Stories

Biomedical imaging at one-thousandth the cost

November 23, 2015

MIT researchers have developed a biomedical imaging system that could ultimately replace a $100,000 piece of a lab equipment with components that cost just hundreds of dollars.

New method for imaging marmoset brains

November 19, 2015

Researchers at the RIKEN Brain Science Institute in Japan have developed a new system for imaging the activity of individual neurons in the marmoset brain. Published in Cell Reports, the study shows how amplifying genetically ...

Research reveals new discoveries on a bug with bifocals

November 4, 2015

While study has long been conducted on vertebrates with sight-sensory systems involving a lens, retina and nervous system, new research reported by the University of Cincinnati and supported by the National Science Foundation ...

Recommended for you

Roboticists learn to teach robots from babies

December 1, 2015

Babies learn about the world by exploring how their bodies move in space, grabbing toys, pushing things off tables and by watching and imitating what adults are doing.

Getting into the flow on the International Space Station

December 1, 2015

Think about underground water and gas as they filter through porous materials like soil and rock beds. On Earth, gravity forces water and gas to separate as they flow through the ground, cleaning the water and storing it ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.