One-of-a-kind meteorite unveiled

April 22, 2006

The depths of space are much closer to home following the University of Alberta's acquisition of a meteorite that is the only one of its kind known to exist on Earth! What makes it so rare? The meteorite is 'pristine' – that is, still frozen and uncontaminated – and so provides an invaluable preserved record of material from when the solar system formed 4.57 billion years ago.

The Tagish Lake Meteorite is carbonaceous chondrite and, as such, represents primitive material from which the solar system formed. The meteorite is rich in pre-solar grains – grains from other stars that were present near our solar system when it formed. The meteorite contains primitive molecules that are the building blocks of the components necessary for life. The pristine state of the meteorite makes it especially important for scientific research purposes; it presents an unprecedented opportunity to look for extraterrestrial ices.

The University of Alberta, through the Department of Museums and Collections Services and the Department of Earth and Atmospheric Sciences, led a consortium of partners that, together, acquired the pristine samples for mutual research and heritage interests. These partners include the Department of Canadian Heritage, the Royal Ontario Museum, Natural Resources Canada, and the Canadian Space Agency.

Dr. Christopher Herd, the Curator of the University of Alberta Meteorite Collection, will lead future research on the University's approximately 650 grams of this unique extraterrestrial rock.

"What's fascinating about the Tagish Lake Meteorite is that it enables us to probe the farthest reaches of our solar system by studying material that has come to us,' noted Dr. Herd, a professor of Earth and Atmospheric Sciences at the University of Alberta. The study of the meteorite has the potential for revolutionizing our understanding of the formation of the solar system. The meteorite fell on the frozen surface of Tagish Lake, northern BC, in Canada on January 18, 2000.

Source: University of Alberta

Explore further: Cosmic glasses for space exploration

Related Stories

Cosmic glasses for space exploration

January 4, 2016

How are asteroids and planets formed from stony particles? This question is being explored in an experiment by scientists from the universities of Münster and Braunschweig. For the investigation, Fraunhofer researchers have ...

New clues to Ceres' bright spots and origins

December 9, 2015

Ceres reveals some of its well-kept secrets in two new studies in the journal Nature, thanks to data from NASA's Dawn spacecraft. They include highly anticipated insights about mysterious bright features found all over the ...

Researchers shed new light on the origins of Earth's water

November 12, 2015

Water covers more than two-thirds of Earth's surface, but its exact origins are still something of a mystery. Scientists have long been uncertain whether water was present at the formation of the planet, or if it arrived ...

Recommended for you

Superconductors could detect superlight dark matter

February 9, 2016

(Phys.org)—Many experiments are currently searching for dark matter—the invisible substance that scientists know exists only from its gravitational effect on stars, galaxies, and other objects made of ordinary matter. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.