One-of-a-kind meteorite unveiled

April 22, 2006

The depths of space are much closer to home following the University of Alberta's acquisition of a meteorite that is the only one of its kind known to exist on Earth! What makes it so rare? The meteorite is 'pristine' – that is, still frozen and uncontaminated – and so provides an invaluable preserved record of material from when the solar system formed 4.57 billion years ago.

The Tagish Lake Meteorite is carbonaceous chondrite and, as such, represents primitive material from which the solar system formed. The meteorite is rich in pre-solar grains – grains from other stars that were present near our solar system when it formed. The meteorite contains primitive molecules that are the building blocks of the components necessary for life. The pristine state of the meteorite makes it especially important for scientific research purposes; it presents an unprecedented opportunity to look for extraterrestrial ices.

The University of Alberta, through the Department of Museums and Collections Services and the Department of Earth and Atmospheric Sciences, led a consortium of partners that, together, acquired the pristine samples for mutual research and heritage interests. These partners include the Department of Canadian Heritage, the Royal Ontario Museum, Natural Resources Canada, and the Canadian Space Agency.

Dr. Christopher Herd, the Curator of the University of Alberta Meteorite Collection, will lead future research on the University's approximately 650 grams of this unique extraterrestrial rock.

"What's fascinating about the Tagish Lake Meteorite is that it enables us to probe the farthest reaches of our solar system by studying material that has come to us,' noted Dr. Herd, a professor of Earth and Atmospheric Sciences at the University of Alberta. The study of the meteorite has the potential for revolutionizing our understanding of the formation of the solar system. The meteorite fell on the frozen surface of Tagish Lake, northern BC, in Canada on January 18, 2000.

Source: University of Alberta

Explore further: Rosetta shows how comet interacts with the solar wind

Related Stories

Scientists unlock secrets of stars through aluminium

July 29, 2015

Physicists at the University of York have revealed a new understanding of nucleosynthesis in stars, providing insight into the role massive stars play in the evolution of the Milky Way and the origins of the Solar System.

When will we know we have found extraterrestrial life?

July 10, 2015

(Phys.org)—As we become more advanced in astronomy, continuously searching and finding lots of potentially habitable extrasolar planets that could harbor alien life, it seems that it's not a matter of if but when we will ...

What is a terrestrial planet?

July 2, 2015

In studying our solar system over the course of many centuries, astronomers learned a great deal about the types of planets that exist in our universe. This knowledge has since expanded thanks to the discovery of extrasolar ...

MAVEN results find Mars behaving like a rock star

June 22, 2015

If planets had personalities, Mars would be a rock star according to recent preliminary results from NASA's MAVEN spacecraft. Mars sports a "Mohawk" of escaping atmospheric particles at its poles, "wears" a layer of metal ...

Recommended for you

Quantum matter stuck in unrest

July 31, 2015

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.