Nano World: Breath test for breast cancer

April 21, 2006

Breath tests for breast cancer might arise via pockets only square nanometers or billionths of a meter in size, experts told UPI's Nano World.

"If this is successful, this could lead to a quick, non-invasive and inexpensive test that could be widely dispersed over the counter to bring breast cancer screening even to people who don't have expensive health plans," said researcher Joerg Lahann, a chemist and materials scientist at the University of Michigan at Ann Arbor.

Past research found molecules generated by breast cancer can be found in breath and urine. Lahann and his colleagues are developing surfaces placed over electrodes that could in theory detect these compounds, known as metabolites.

The surfaces are only a single molecule deep. These molecules normally stand up straight in rows much like a bed of nails. When straight, the pockets between these molecules attract the metabolites. When a voltage is applied, the straight molecules bend, blocking access to the pockets and ejecting their contents.

The pockets would attract a variety of molecules toward them, not just the metabolites, Lahann said. In order to specifically attract metabolites, the plan is to switch the voltage on and off, varying the voltage each time.

"The hope is that by doing, say, 15 different measurements, you can find that no two different kinds of molecules have the same pattern on slightly differing surfaces. You would have a fingerprint," he explained. "We hope to switch fast enough, say 10, 15, maybe 20 times, to perform all the analyses you'd need with just one inhalation."

Detecting breast cancer often "is either invasive, requiring biopsies, or you requires X-ray or other expensive equipment," Lahann said. "Many therapies we have now are really good -- you just have to catch breast cancer early on."

The scientists may also have to rely on several different kinds of switchable surfaces in a device, Lahann noted. "It's too early in the research to be sure right now," he said.

Lahann and his colleagues have received a three-year U.S. Department of Defense grant for their research. "If the basic concept turns out to be feasible, we hope we can move toward a commercializable stage five to 10 years after that," Lahann said.

"It's a really novel concept, using these switchable surfaces for cancer detection. It has a lot of great potential," said chemical engineer Robert Langer of the Massachusetts Institute of Technology in Cambridge.

Copyright 2006 by United Press International

Related Stories

Recommended for you

Trade in invasive plants is blossoming

October 3, 2015

Every day, hundreds of different plant species—many of them listed as invasive—are traded online worldwide on auction platforms. This exacerbates the problem of uncontrollable biological invasions.

How much for that Nobel prize in the window?

October 3, 2015

No need to make peace in the Middle East, resolve one of science's great mysteries or pen a masterpiece: the easiest way to get yourself a Nobel prize may be to buy one.

Drone market to hit $10 billion by 2024: experts

October 3, 2015

The market for military drones is expected to almost double by 2024 to beyond $10 billion (8.9 billion euros), according to a report published Friday by specialist defence publication IHS Jane's Intelligence Review.

En route to CEATEC: 17.3-inch 8K4K LCD module

October 3, 2015

In the old days, people were impressed if a screen image simply was not blurry. "Clear" was the supreme compliment. We know the rest. Technology advances have raised consumer expectations; a competitive vendor in electronics ...

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.