Marine bacteria are cutting cooling gas emissions

April 5, 2006

Marine bacteria are reducing the amount of an important climate cooling gas given off from our seas and studies on enzymes from a model bacterium could help to understand this important process, say scientists today (Wednesday 5 April 2006) at the Society for General Microbiology’s 158th Meeting at the University of Warwick, UK.

“Dimethyl sulphide contributes to the characteristic smell of the sea. But it is also an important negative greenhouse gas, since in the atmosphere it promotes cloud formation which in turn reduces the amount of sunlight and heat reaching the earth’s surface,” says Dr Hendrik Schäfer of the University of Warwick. “We therefore need to know more about how this gas is released by the oceans, and how much of a cooling effect this has on our climate”.

“It has long been known that certain bacteria living in seawater can break down most of the dimethyl sulphide produced in the sea before it can be released into the air to have its cooling effect,” says Dr Schäfer. “Almost all of this gas is produced in the sea. If we can improve our knowledge of the biological pathways and enzymes used by bacteria to break down the gas in the sea, we will have a better understanding of the important role played by our oceans and the life forms they contain in climate regulation”.

The scientists are currently studying which enzymes bacteria called Methylophaga use for dimethyl sulphide degradation. Complementing this work, the genome of one strain of Methylophaga will soon be sequenced to help identify the genes underpinning this process. The discovery of novel genes and enzymes will lead to a better understanding of bacterial dimethyl sulphide degradation, an activity that prevents the emission of potentially much larger quantities of the climate cooling gas.

“We may find new enzymes from our genetic work that could also have commercial potential in biotechnology, for instance in biofilters to reduce nuisance smells from industrial operations,” says Dr Schäfer.

The Warwick team’s work, which is being prepared for journal publication, will be discussed for the first time in public amongst scientists at the Society for General Microbiology’s meeting.

Source: Society for General Microbiology

Explore further: Scientists discover how microbes acquire electricity in making methane

Related Stories

UK town using fuel from human waste

October 7, 2010

(PhysOrg.com) -- A town in Oxfordshire has become the first in the UK to have biomethane gas generated from human waste piped to their homes for gas central heating and cooking.

Biofuels and chemicals that don't cut into the food supply

March 16, 2015

Emma Master's team spent the last two years studying plant cell walls, the part of the cell that gives trees and other flora their structural strength. The wall itself is built from a tight complex of sugars and polymers, ...

Catalyst destroys common toxic nerve agents quickly

March 16, 2015

Northwestern University scientists have developed a robust new material, inspired by biological catalysts, that is extraordinarily effective at destroying toxic nerve agents that are a threat around the globe. First used ...

Recommended for you

Short wavelength plasmons observed in nanotubes

July 28, 2015

The term "plasmons" might sound like something from the soon-to-be-released new Star Wars movie, but the effects of plasmons have been known about for centuries. Plasmons are collective oscillations of conduction electrons ...

'Expansion entropy': A new litmus test for chaos?

July 28, 2015

Can the flap of a butterfly's wings in Brazil set off a tornado in Texas? This intriguing hypothetical scenario, commonly called "the butterfly effect," has come to embody the popular conception of a chaotic system, in which ...

New chemistry makes strong bonds weak

July 28, 2015

Researchers at Princeton have developed a new chemical reaction that breaks the strongest bond in a molecule instead of the weakest, completely reversing the norm for reactions in which bonds are evenly split to form reactive ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.