Towards the magnetic fridge

April 21, 2006

Researchers at the University of Cambridge have discovered a material that gives a whole new complexion to the term 'fridge magnet'. When this alloy is placed in a magnetic field, it gets colder. Karl Sandeman and his co-workers think that their material - a blend of cobalt, manganese, silicon and germanium - could help to usher in a new type of refrigerator that is up to 40 percent more energy-efficient than conventional models.

Given how much energy is consumed by domestic and industrial refrigeration, that could have a significant environmental payoff. Sandeman describes the work at the Institute of Physics Condensed Matter and Materials Physics conference at the University of Exeter, on Friday 21 April.

The 'magnetic fridge' envisaged by the Cambridge team would use a phenomenon called the magnetocaloric effect (MCE), whereby a magnetic field causes certain materials to get warmer (a positive MCE) or cooler (a negative MCE). Although the effect was discovered more than 120 years ago, it is only recently that magnetocaloric materials have been known with the right properties for use in everyday refrigeration. But several factors have so far prevented such applications.

For one thing, some of the materials - typically metal alloys - that show the strongest MCE contain the element gadolinium, which is very expensive. And some of the best potential alternatives contain arsenic, raising health concerns.

Sandeman and colleagues have now found a material that is neither toxic nor costly, and which generates significant cooling at around room temperature. The key to the magnetocaloric behaviour is a sudden change in the magnetic state of the compound - a so-called magnetic transition. The material is magnetic because it contains metal atoms that themselves act like tiny bar magnets. As it is warmed up from subzero temperatures, there comes a point where these atomic magnets abruptly change the way in which they are lined up. This switch occurs at different temperatures when the material is placed in a magnetic field. So applying such a field can trigger the magnetic transition, and the resulting realignment of atomic magnets can then cause the material to lose heat and become colder - in other words, it shows a negative MCE.

Such a material could act as a heat pump for refrigeration. Applying the magnetic field triggers cooling; then the field is switched off and the material absorbs heat from its surroundings, cooling them down. Once that has happened, the field is switched on again and the cycle repeats, each time sucking more heat from the surroundings.

Sandeman and colleagues say that their new magnetocaloric material is particularly attractive because it can be tuned - depending on the strength of the applied magnetic field, as well as the way the substance is synthesized - to work over a wide temperature range, making it potentially suitable not just for a kitchen fridge working at room temperature but for other cooling applications at higher or lower temperatures. The Cambridge team are now developing a spin-off company, Camfridge Ltd, to bring their new materials system to real applications.

Source: Institute of Physics

Explore further: Mapping electromagnetic waveforms

Related Stories

Mapping electromagnetic waveforms

July 22, 2016

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Asymmetrical magnetic microbeads turned into micro-robots

July 20, 2016

Janus was a Roman god with two distinct faces. Thousands of years later, he inspired material scientists working on asymmetrical microscopic spheres—with both a magnetic and a non-magnetic half—called Janus particles. ...

Mixing topology and spin

July 20, 2016

In the pursuit of material platforms for the next generation of electronics, scientists are studying new compounds such as topological insulators (TIs), which support protected electron states on the surfaces of crystals ...

Recommended for you

Plant cellulose prevents short circuits in batteries

July 22, 2016

(Phys.org)—In order to prevent short circuits in batteries, porous separator membranes are often placed between a battery's electrodes. There is typically a tradeoff involved, since these separators must simultaneously ...

Ultrasensitive sensor using N-doped graphene

July 22, 2016

A highly sensitive chemical sensor based on Raman spectroscopy and using nitrogen-doped graphene as a substrate was developed by an international team of researchers working at Penn State. In this case, doping refers to introducing ...

Historical records miss a fifth of global warming: NASA

July 22, 2016

A new NASA-led study finds that almost one-fifth of the global warming that has occurred in the past 150 years has been missed by historical records due to quirks in how global temperatures were recorded. The study explains ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.