Carbon Nanotubes with a Memory

April 3, 2006 feature
This image shows (a) the schematic structure of the flash-memory device and (b) a transmission electron microscope image of the device´s layered structure (the carbon-nanotube layer is labeled as "CNT").

Carbon nanotubes have successfully been made into a variety of nanoscale circuit components, including transistors, inverters, and switches. Now, a pair of scientists has made a rough, yet promising, flash memory device out of carbon nanotubes. The device is a long way from a finished, marketable product, but it nonetheless represents a significant step in the drive to incorporate carbon nanotubes into mainstream electronics.

“Unlike similar devices that have been made, which use carbon nanotubes but can only operate at very low, very impractical temperatures, our device displays impressive long-term information retention characteristics at room temperature,” said lead researcher Jiyan Dai, a physicist at The Hong Kong Polytechnic University, to PhysOrg.com. “This indicates that mainstream carbon nanotube-based flash memory devices are a real possibility.”

Flash memory devices are currently used to store data in many types of electronic items, including digital cameras, USB memory sticks, and cell phones. Flash memory is considered a “non-volatile” form of memory, meaning it can retain data without a constant supply of power.

A typical flash memory device stores information within a grid of transistors called cells. Each cell consists of three layers: a “control gate” compound and a “floating gate” compound separated by a thin layer of an insulating oxide compound. When a voltage is applied to the cell, electrons build up as negative electric charge in the floating gate. At a certain threshold of charge, the floating gate is considered closed and the cell is thought to have a value of “0.” When the charge drops below that level, the gate is open and the cell has a value of “1.” In this way, each cell is able to hold one bit of information (there are eight bits in one byte).

Dai and co-researcher X.B. Lu created their flash memory device using carbon nanotubes as the charge-storage layer. As described in a paper in the online edition of Applied Physics Letters, they embedded the nanotubes in a compound made of the elements hafnium, aluminum, and oxygen, abbreviated HfAlO, which serves as both the control gate and the oxide layer. This carbon-nanotube “sandwich,” with each layer only several nanometers in thickness, sits on a substrate of silicon.

Dai and Lu determined the charge-retention characteristics of the device by measuring, first, its capacitance (how well it stores electric charge) as a function of the voltage applied across it. They also measured how well the device held onto its charge as time elapsed, from fractions of a second up to nearly three hours. They found that the short-term charge retention wasn’t excellent. During the first couple of minutes, the “memory window” — the voltage range over which the device can retain information — became narrower, a property that is not desirable for flash memory devices. However, over the long term, the memory window remained at a value of about 0.5 V.

“We believe that the excellent long-term charge-retention characteristics of our device are due to the unique structure and electrical properties of carbon nanotubes,” said Dai.

Citation: “Memory effects of carbon nanotubes as charge storage nodes for floating gate memory applications,” Applied Physics Letters 88, 113104 (2006)

By Laura Mgrdichian, Copyright 2006 PhysOrg.com

Explore further: Scientists grow high-quality graphene from tea tree extract

Related Stories

Scientists grow high-quality graphene from tea tree extract

August 21, 2015

(Phys.org)—Graphene has been grown from materials as diverse as plastic, cockroaches, Girl Scout cookies, and dog feces, and can theoretically be grown from any carbon source. However, scientists are still looking for a ...

New memory material may hold data for one billion years

May 20, 2009

(PhysOrg.com) -- Packing more digital images, music, and other data onto silicon chips in USB drives and smart phones is like squeezing more strawberries into the same size supermarket carton. The denser you pack, the quicker ...

Recommended for you

Long-sought chiral anomaly detected in crystalline material

September 3, 2015

A study by Princeton researchers presents evidence for a long-sought phenomenon—first theorized in the 1960s and predicted to be found in crystals in 1983—called the "chiral anomaly" in a metallic compound of sodium and ...

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

Ice sheets may be more resilient than thought

September 3, 2015

Sea level rise poses one of the biggest threats to human systems in a globally warming world, potentially causing trillions of dollars' worth of damages to flooded cities around the world. As surface temperatures rise, ice ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.