AFRL Proves Feasibility Of Plasma Actuators

April 24, 2006

The Air Force Research Laboratory is laying the groundwork to develop revolutionary hypersonic aerospace vehicles. AFRL is examining the feasibility of replacing traditional mechanical actuators, which move to control an air vehicle's flight control surfaces like wing flaps, with plasma actuators that require no moving parts and are more reliable.

As part of the Air Force Office of Scientific Research Boundary Layers and Hypersonics program, AFRL conducted a wind tunnel test to evaluate the feasibility of using plasma actuators for airframe flight control. In AFRL's Mach 5 plasma channel wind tunnel, engineers used a strong electric field to ionize air around an air vehicle model to create plasma.

Air diverted by plasma heating successfully exerted force on the model and demonstrated that the plasma actuator concept is a viable area for further study and development.

AFRL's Mach 5 plasma channel wind tunnel relies upon a vacuum system to generate low-density air flows. A high electrical voltage placed between metal electrodes on a model in the plasma channel ionizes the air between them and creates plasma, a state of matter where electrons are stripped from molecules. While usually occurring at extreme temperatures and pressures such as the conditions experienced within a star or by a hypersonic vehicle during flight, man-made plasma is found in items like fluorescent light bulbs and computer screen plasma displays.

The Boundary Layers and Hypersonics program is developing knowledge of fluid physics to facilitate future aerospace vehicle designs. The program focuses on characterizing, predicting and controlling high-speed fluid dynamic phenomena including boundary layer transition, shock/boundary layer, shock/shock interactions and other airframe propulsion integration phenomena including real-gas effects, plasma aerodynamics, magnetohydrodynamics and high-speed flow heat transfer.

Copyright 2006 by Space Daily, Distributed United Press International

Explore further: Researchers successfully test device that analyzes components within a vacuum

Related Stories

To extinguish a hot flame, DARPA studied cold plasma

July 12, 2012

DARPA theorized that by using physics techniques rather than combustion chemistry, it might be possible to manipulate and extinguish flames. To achieve this, new research was required to understand and quantify the interaction ...

Another high-definition plasma

February 24, 2011

( -- The sight of an aurora evokes feelings of mystery and awe in the weekend star gazer and scientist alike. The stargazer may ponder the vastness of our universe or how such vivid color can be created in space, ...

Recommended for you

Researchers discover new rules for quasicrystals

October 25, 2016

Crystals are defined by their repeating, symmetrical patterns and long-range order. Unlike amorphous materials, in which atoms are randomly packed together, the atoms in a crystal are arranged in a predictable way. Quasicrystals ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.