Why spiders' silk threads don't twist

March 30, 2006
Araneus diadematus spider dangling from its thread.
Araneus diadematus spider dangling from its thread.

Unlike a mountain climber swinging from a rope, a spider suspended from its silk thread hardly ever twists. Although the flexibility and strength of a spider’s dragline outperforms the best synthetic fibres, surprisingly little has been published on the twist properties of the thread. A new study however, by a research team from Oxford and Rennes Universities, published in Nature, reveals just how good the damping properties of spider silk are.

The researchers used a small plastic or copper rod to represent the weight of the spider, and tied it to a variety of threads. The 'spider' rod was twisted through 90 degrees, to make the rod turn back and forth many times around its original position, and a camera linked to a computer registered the responses of the different threads.

The research team first used a thread of Kevlar, a synthetic organic polymer used in the manufacture of racing cars, known for its strength when stretched. After the thread was twisted around from its equilibrium, it oscillated gently around its original position. The response was elastic with little energy wasted. They then examined a soft metallic copper thread, which twisted a few times in the same experiment, but after several trials became brittle. It displayed the high damping typical of high-energy dissipation. The researchers then used a dragline silk from an Araneus diadematus spider, where the oscillation was damped down after a few twists, and unlike the copper thread, the spider silk retained its twisting qualities through several cycles.

Professor Fritz Vollrath said: 'It seems that selection against twisting and swinging in the spider dragline thread has led to the evolution of a shape-memory material that does not need any external stimulus to give total recovery, even if it does take time. The twist properties add yet another beneficial quality to the famously strong silk, and this might have evolved so that an abseiling spider does not swing in a way that might attract predators.'

The researchers intend to carry out further research into this and other silk proteins to see whether sacrificial hydrogen bonds and their reconstruction may form the basis for the observed mechanical behaviour.

Source: University of Oxford

Explore further: Wasp masters manipulate web-building zombie slave spiders

Related Stories

Wasp masters manipulate web-building zombie slave spiders

August 5, 2015

Some wasps have unpleasant habits. Hijacking an unsuspecting insect or spider, parasitic wasps incapacitate their hapless victims by taking control of their nervous systems and turning them into zombies. Once the wasp has ...

Learning from biology to accelerate discovery

July 6, 2015

A spider's web is one of the most intricate constructions in nature, but its precious silk has more than one use. Silk threads can be used as draglines, guidelines, anchors, pheromonal trails, nest lining, or even food. And ...

Silkworms spinning spider webs

January 3, 2012

(PhysOrg.com) -- A spiders silk is strong and more elastic and has a large range of possible medical applications. However, spiders have a history of being territorial and prone to cannibalism, so the idea of having a large ...

Spider silk glue inspires next-generation technology

July 22, 2011

(PhysOrg.com) -- Water affects orb spider web glue differently than cobweb glue. Orb web glue reacts to humidity, but cobweb glue resists it. These findings by a University of Akron research team inspire the development of ...

Recommended for you

A marine creature's magic trick explained

September 2, 2015

Tiny ocean creatures known as sea sapphires perform a sort of magic trick as they swim: One second they appear in splendid iridescent shades of blue, purple or green, and the next they may turn invisible (at least the blue ...

Prawn Nebula: Cosmic recycling

September 2, 2015

Dominating this image is part of the nebula Gum 56, illuminated by the hot bright young stars that were born within it. For millions of years stars have been created out of the gas in this nebula, material which is later ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.