Simulation Tracks Planetary Evolution

March 30, 2006

Two British astronomers have constructed a computer simulation that tracks how giant protoplanets tend to form and migrate inward toward their central star.

In an article to be published in the journal Astronomy and Astrophysics, Paul Cresswell and Richard Nelson of Queen Mary University said their model demonstrates the complete planetary formation process, which begins as dust grains coagulate to form planetesimals up to 1 kilometer (0.64 mile) in diameter.

Planetesimals grow into planetary embryos from 100 kilometers (64 miles) to 1,000 kilometers (640 miles) wide, after which they tend to agglomerate in "oligarchic" manner, where a few large bodies dominate the formation process, and accrete the surrounding and much smaller planetesimals.

Eventually, the scientists said, the oligarchs form terrestrial planets near the central star and planetary cores of about 10 Earth masses in the giant-planet region beyond 3 astronomical units – or nearly 300 million miles away from the star.

Cresswell and Nelson acknowledged that their model does not explain the formation of gas giant planets – something previous simulations likewise have not been able to demonstrate – because predicted gravitational interaction between the gaseous disc and the massive planetary cores seems to cause them to move rapidly inward over about 100,000 years, in a process called migration.

They said rapid inward migration of giant protoplanets constitutes a major problem, "because this timescale is much shorter than the time needed for gas to accrete onto the forming giant planets." They said theories still predict giant protoplanets merging into the central star before planets have time to form – which "makes it very difficult to understand how they can form at all."

One possibility: in a small number - about 2 percent - of cases, interaction with stellar gravity can eject inward-migrating giant protoplanets, thereby lengthening their lifetimes. In most cases, however – 98 percent - the protoplanets are trapped in a series of orbital resonances and migrate inward in lockstep, often merging with the central star.

The scientists said in most cases gravitational interactions within a swarm of protoplanets embedded in a disc cannot stop their inward migration, so the theoretical problem requires more investigation.

Other potential solutions include the possibility that several generations of planets form and only the ones that form as the disc dissipates survive the formation process.

This outcome may make it harder to form gas giants, however, because the disc can become depleted of the material from which gas giant planets form. If enough gas lies outside of the planets' orbits, it could allow still-forming planets to accrete new material.

Another solution might be related to the physical properties of the disc. In their simulations, Cresswell and Nelson assumed the disc is smooth and non-turbulent, which might not be the case. Large parts of the disc could be chaotic as a consequence of instabilities caused by magnetic fields – something that could prevent inward migration over long time periods.

Copyright 2006 by Space Daily, Distributed United Press International

Explore further: Eris' moon Dysnomia

Related Stories

Eris' moon Dysnomia

July 29, 2015

Ask a person what Dysnomia refers to, and they might venture that it's a medical condition. In truth, they would be correct. But in addition to being a condition that affects the memory (where people have a hard time remembering ...

Neptune's moon of Triton

July 29, 2015

The planets of the outer solar system are known for being strange, as are their many moons. This is especially true of Triton, Neptune's largest moon. In addition to being the seventh-largest moon in the solar system, it ...

Vesta's potassium-to-thorium ratio reveals hot origins

July 23, 2015

Studies of materials on the surface of Vesta offer new evidence that the giant asteroid is the source of howardite, eucrite and diogenite (HED) basaltic meteorites, supporting current models of solar system evolution and ...

Mini-Neptunes might host life under right conditions

July 23, 2015

M-dwarfs, which are cooler than our sun, have habitable zones closer to the stars. As such, any habitable planets orbiting these stars would transit frequently, making the chances of discovery better.

Recommended for you

Researchers design first artificial ribosome

July 29, 2015

Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

Playing 'tag' with pollution lets scientists see who's 'it'

July 29, 2015

Using a climate model that can tag sources of soot from different global regions and can track where it lands on the Tibetan Plateau, researchers have determined which areas around the plateau contribute the most soot—and ...

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.