Scientists discover the Universe's strongest magnetic field

March 30, 2006

Scientists from The University of Exeter and the International University, Bremen have discovered what is thought to be the strongest magnetic field in the Universe. In a paper in the journal Science, Dr Daniel Price and Professor Stephan Rosswog show that violent collisions between neutron stars in the outer reaches of space create this field, which is 1000 million million times larger than our earth's own magnetic field. It's thought that these collisions could be behind some of the brightest explosions in the Universe since the Big Bang, so-called short Gamma-ray bursts.

Dr Daniel Price, of the School of Physics at The University of Exeter, said: " We have managed to simulate, for the first time, what happens to the magnetic field when neutron stars collide, and it seems possible that the magnetic field produced could be sufficient to spark the creation of Gamma-ray bursts. Gamma-ray bursts are the most powerful explosions we can detect but until recently little to nothing has been known about how they are generated.

It's thought that strong magnetic fields are essential in producing them, but until now no one has shown how fields of the required intensity could be created."

He continues: "What really surprised us was just how fast these tremendous fields are generated - within one or two milliseconds after the stars hit each other. "

Prof Stephan Rosswog, of the International University, Bremen, Germany, adds: "Even more incredible is that the magnetic field strengths reached in the simulations are just lower limits on the strengths that may be actually be produced in nature.

It has taken us months of nearly day and night programming to get this project running - just to calculate a few milliseconds of a single collision takes several weeks on a supercomputer."

The remnants of supernovae, neutron stars are formed when massive stars run out of nuclear fuel and explode, shedding their outer layers and leaving behind a small but extremely dense core.

When two neutron stars are left orbiting each other, they will spiral slowly together, resulting in these massive collisions.

Source: University of Exeter

Explore further: New approach for Parkinson's diagnosis with flux compensator

Related Stories

New approach for Parkinson's diagnosis with flux compensator

October 21, 2016

A new project for the early detection of Parkinson's disease with strongly magnetized xenon gas has been initiated at FMP. The team led by physicist Leif Schröder has received a three-year grant from the Michael J. Fox Foundation ...

Tracking waves from sunspots gives new solar insight

October 20, 2016

While it often seems unvarying from our viewpoint on Earth, the sun is constantly changing. Material courses through not only the star itself, but throughout its expansive atmosphere. Understanding the dance of this charged ...

UMass Amherst leads international astronomical camera project

October 19, 2016

New discoveries in star formation, galaxy cluster physics, ultra-deep galactic exploration and magnetic field surveys of the universe are coming soon, say a team of astronomers led by Grant Wilson at the University of Massachusetts ...

Recommended for you

New analysis of big data sheds light on cell functions

October 26, 2016

Researchers have developed a new way of obtaining useful information from big data in biology to better understand—and predict—what goes on inside a cell. Using genome-scale models, researchers were able to integrate ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.