Scientists show that children think like scientists

March 29, 2006

Even preschoolers approach the world much like scientists: They are convinced that perplexing and unpredictable events can be explained, according to an MIT brain researcher's study in the April issue of Child Development.

The way kids play and explore suggests that children believe cause-and-effect relationships in the world are governed by fundamental laws rather than by mysterious forces, said Laura E. Schulz, assistant professor of cognitive science and co-author of the study "God Does Not Play Dice: Causal Determinism and Preschoolers' Causal Inferences."

"It's important to understand that kids are approaching the world with deep assumptions that affect their actions and their explanations and shape what they're able to learn next," Schulz said. "Kids' fundamental beliefs affect their learning. Their theoretical framework affects their understanding of evidence, just as it does for scientists."

While previous research had suggested that children do not accept the idea that physical events occur spontaneously, Schulz took that concept one step farther: Would young children accept the idea that physical causes might only work some of the time?

Schulz and colleague Jessica Sommerville of the University of Washington tested 144 preschoolers to look at whether children believe that causes always produce effects. If a child believes causes produce effects deterministically, then whenever causes appear to work only some of the time, children should think some necessary cause is missing or an inhibitory cause is present.

In one study, the experimenters showed children that a switch made a toy with a metal ring light up. Half the children saw the switch work all the time; half saw that the switch only lit the ring toy some of the time. The experimenters also showed the children that removing the ring stopped the toy from lighting up. The experimenters kept the switch, gave the toy to the children and asked the children to stop the toy from lighting up.

If the switch always worked, children removed the ring. If the switch only worked some of the time, children could have removed the ring but they didn't--they assumed that the experimenter had some additional sneaky way of stopping the effect. Children did something completely new: they picked up an object that had been hidden in the experimenter's hand (a squeezable keychain flashlight) and used that to try to stop the toy. That is, the children didn't just accept that the switch might work only some of the time. They looked for an explanation.

Schulz said she believes this is the first study that looks at how probabilistic evidence affects children's reasoning about unobserved causes. The researchers found that children are conservative about unobserved causes (they don't always think mysterious things are happening) but would rather accept unobserved causes than accept that things happen at random.

"We sometimes think that preschoolers are very concrete and work just with what they see," said Schulz, but this research suggests that preschoolers actually have quite abstract beliefs about causal relationships. "Four-year-olds have more sophisticated reasoning than adults tend to give them credit for," she said.

Source: MIT

Explore further: Will your self-driving car be programmed to kill you?

Related Stories

Recommended for you

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

Scientists unlock secrets of stars through aluminium

July 29, 2015

Physicists at the University of York have revealed a new understanding of nucleosynthesis in stars, providing insight into the role massive stars play in the evolution of the Milky Way and the origins of the Solar System.

Studies reveal details of error correction in cell division

July 29, 2015

Cell biologists led by Thomas Maresca at the University of Massachusetts Amherst, with collaborators elsewhere, report an advance in understanding the workings of an error correction mechanism that helps cells detect and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.