Polymer composite provides better fire protection than steel

March 27, 2006

The U.S. Navy needs lighter materials so ships will go further faster. One way to do that is to use new composite materials. But how will these materials respond to fire -- one of the most critical safety concerns on a ship? Virginia Tech material scientists have developed models to test composites for fire resistance – and have a recommendation.

John Bausano, a doctoral student in the chemistry-engineering interdisciplinary Macromolecular Science and Infrastructure Engineering program at Virginia Tech, will present his research in the Excellence in Graduate Polymer Science Research Symposium at the 231st American Chemical Society National Meeting in Atlanta on March 26-30.

Working with Jack Lesko, associate professor of engineering science and mechanics, Bausano developed a testing method – a one-sided heat flux test that can be used on a sample as small as one inch by six inches (1x6") to test a commercially available material – E-glass vinyl ester composite laminates. One side of the material is heated to simulate fire on one side of a wall. A load is placed on one edge to simulate a load-bearing wall. "We measure the deflection, failure, and how hot it gets on the cool side," said Bausano. "That is an important issue because you don't want the fire to spread."

His findings are that the composite material being tested does localize heat, "especially compared to steel, which conducts heat in all directions."

His recommendation as other materials and processing are considered is, "Develop the material with as high a glass transition (Tg) temperature as you can in order to sustain structural rigidity. That would help the engineers and the sailors. The longer the material stays above Tg, or the softening point, the longer the wall will stand. Tg is the upper temperature level of usefulness."

Composite materials would also be useful on oil platforms, where fire is also a concern, he said.

Source: Virginia Tech

Explore further: Adding sodium produces material that is most efficient at converting heat to electricity

Related Stories

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

In Hawaii, living with lava

November 25, 2015

When the most recent eruption of Hawaii's Kilauea volcano started last June, Melvin Sugimoto at first did not think much of it. Hawaii, where he has lived all his life, is made entirely of hardened lava, and Kilauea, perhaps ...

Beavers restore dead wood in boreal forests

November 23, 2015

New research shows that beavers create significant amounts of dead wood into the lowland shore forests of boreal wetlands. Particularly snags and deciduous dead wood are formed through the beavers' actions.

Amid move to end Montana cleanup, some asbestos left behind

November 21, 2015

Federal officials say their final analysis of a Montana community wracked by a deadly asbestos contamination shows a costly and much-criticized cleanup is working, even though some 700 properties have yet to be investigated ...

Salty solution to better, safer batteries

November 19, 2015

A team of researchers from the University of Maryland (UMD) and the U.S. Army Research Laboratory (ARL) have devised a groundbreaking "Water-in-Salt" aqueous Lithium ion battery technology that could provide power, efficiency ...

Recommended for you


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.