Nano World: New microphone microscope tip

March 2, 2006

New microscopic probes resembling mergers between needles and microphones could help speedily measure chemical and mechanical properties of a material or a drug with just one poke, experts told UPI's Nano World.

These probes could also help manufacture devices on the nanometer or billionth of a meter scale far more quickly than ever before, said electrical engineer Levent Degertekin at the Georgia Institute of Technology in Atlanta.

Crucial drivers of nanotechnology are devices known as atomic force microscopes or AFMs, which run extraordinarily sharp probes across surfaces to scan them with three-dimensional molecular detail much as a blind person uses his or her fingers to read bumps on a page of Braille. As popular as atomic force microscopes are, two chief disadvantages of theirs are that they are relatively slow and not sensitive to the physical characteristics of a target surface.

A new microphone-inspired probe developed by Degertekin and his colleagues is up to 100 times faster than current atomic force microscopes and can capture details never before possible with atomic force microscopes. The force sensing integrated readout and active tip, or FIRAT, can be added to existing atomic force microscopes with little effort.

"I think this technology will eventually replace the current AFM," Degertekin said. "We've multiplied each of the old capabilities by at least 10, and it has lots of new applications."

"It is possible that this device provides us with the 'ubiquitous' tool for examining nanostructures," said researcher Calvin Quate, an electrical engineer at Stanford University in California and one of the inventors of atomic force microscopes.

In one typical version of the probe, a sharp platinum or tungsten tip 10 microns long ending in a point only 50 nanometers or billionths of a meter across emerges from a flexible aluminum membrane. This structure and its driving mechanism are together far smaller and less bulky than those often used to move probes up and down in regular atomic force microscopes, making FIRAT far faster.

Just before the tip reaches a target, attractive forces from the sample begin tugging it down. By behaving much like microphone diaphragms pick up sound vibrations, the membrane starts receiving sensory readings well before the tip touches down.

Once the tip hits the surface, the degree to which the material pushes back reveals how elastic and adhesive it is. Prior atomic force microscope probes responded too slowly to properly resolve all these transient interactions.

"From just one scan, we can get topography, adhesion, stiffness, elasticity, viscosity -- pretty much everything," Degertekin said. The researchers presented their findings in the February issue of the journal Review of Scientific Instruments.

Just as scientists use atomic force microscope probes as fingers to read surfaces, so can they use these fingers to build devices. However, atomic force microscope slowness made them impractical for such a purpose. "FIRAT may change that," Degertekin said.

In future, the scientists plan to explore other designs for their probes. For example, instead of placing tips on membranes, Degertekin suggested they could place them in the middle of beams or the ends of levers. Further refinement could also lead to sharper tips with points 10 nanometers or less wide. They are currently in talks with several companies to commercialize their tools, and could have a FIRAT system that could adapt to most any conventional AFM in a year.

Physicist Thomas Thundat at Oak Ridge National Laboratory in Tennessee noted FIRAT could have biological applications. "They could image DNA and proteins," he said. Degertekin speculated about configurations of his team's device for the pharmaceutical industry, where arrays of many FIRAT membranes coated with a target of interest, such as a protein linked to a disease such as cancer, were lowered over arrays of tips coated with potential drugs. By noting how such drugs interacted with their targets, researchers could rapidly screen for effective medicines.

Copyright 2006 by United Press International

Explore further: Scientists use particle accelerator to visualize properties of nanoscale electronic materials

Related Stories

The incredible shrinking ESR machine

July 15, 2015

Researchers at the National Institute of Standards and Technology (NIST) have come up with a way to shrink a research instrument generally associated with large machines that make bulk measurements of samples down to a literally ...

Aluminum clusters shut down molecular fuel factory

July 6, 2015

Despite decades of industrial use, the exact chemical transformations occurring within zeolites, a common material used in the conversion of oil to gasoline, remain poorly understood. Now scientists have found a way to locate—with ...

Recommended for you

How bees naturally vaccinate their babies

July 31, 2015

When it comes to vaccinating their babies, bees don't have a choice—they naturally immunize their offspring against specific diseases found in their environments. And now for the first time, scientists have discovered how ...

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

A cataclysmic event of a certain age

July 27, 2015

At the end of the Pleistocene period, approximately 12,800 years ago—give or take a few centuries—a cosmic impact triggered an abrupt cooling episode that earth scientists refer to as the Younger Dryas.

Dense star clusters shown to be binary black hole factories

July 29, 2015

The coalescence of two black holes—a very violent and exotic event—is one of the most sought-after observations of modern astronomy. But, as these mergers emit no light of any kind, finding such elusive events has been ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.