Brookhaven Scientists Working Toward Practical Hydrogen-Storage Materials

March 15, 2006
Peter Sutter
Peter Sutter

Hydrogen-storage materials hold the promise of supporting many exciting new technologies, such as clean, efficient hydrogen fuel cells for automobiles. At the U.S. Department of Energy’s Brookhaven National Laboratory, scientists are working toward this goal by studying the basic mechanisms that underlie reversible hydrogen storage in certain materials.

Currently, a main factor limiting the development of hydrogen-based energy technologies, such as fuel cells, is the ability to store a sufficient amount of hydrogen in a way that allows for easy and safe refueling. One of the most promising materials is titanium-doped sodium alanate, a type of material known as a “complex metal hydride.” Sodium alanate, on its own, is able to store and release a reasonable amount of hydrogen, but refueling the spent material requires it to be “doped” with a small amount of titanium. The titanium atoms allow sodium alanate to work efficiently at realistic temperatures and pressures.

“Our work focuses on how titanium atoms facilitate the hydrogen uptake in sodium alanate,” said Brookhaven material scientist Peter Sutter, a member of the research team. “Understanding the atomic mechanisms that govern this process will guide us in a targeted search for a viable material for large-scale hydrogen storage.”

A key step in the refueling process is the splitting of incoming hydrogen molecules (hydrogen atoms tend to bind in pairs) into single hydrogen atoms. The hydrogen then combines with aluminum and sodium to form crystalline sodium alanate. Sutter and his colleagues predict that the titanium atoms bind to the aluminum atoms in such a way as to create “active sites” where hydrogen molecules are separated and ultimately incorporated. These active sites are being studied experimentally using scanning tunneling microscopy, a powerful imaging technique that is able to image individual atoms at surfaces.

Erik Muller, a postdoctoral student working with Sutter and a research associate in Brookhaven’s hydrogen storage research team, will discuss their results at the March meeting of the American Physical Society in Baltimore, Maryland. He will give his talk at 9:48 a.m. on Wednesday, March 15, in Room 312 of the Baltimore Convention Center.

This research is funded by the Office of Basic Energy Sciences within the U.S. Department of Energy’s Office of Science.

Source: BNL, by Laura Mgrdichian

Explore further: New material could advance superconductivity

Related Stories

New material could advance superconductivity

July 28, 2016

Scientists have looked for different ways to force hydrogen into a metallic state for decades. A metallic state of hydrogen is a holy grail for materials science because it could be used for superconductors, materials that ...

Soluble elements from a new corner of the periodic table

June 6, 2016

It is one of the more memorable experiments of high school chemistry lessons: when elemental sodium comes into contact with water it burns and explodes. Sodium simply isn't happy in its elemental form, making it highly reactive. ...

Water Motions Revealed (w/ Video)

May 21, 2010

(PhysOrg.com) -- Gaze into a glass of water, and you're unlikely to see much more than your own reflection. But gaze a little deeper using a microscope -- or, better yet, a series of laser pulses and detectors -- and you'll ...

The Role of Titanium in Hydrogen Storage

September 2, 2005

As part of ongoing research to make hydrogen a mainstream source of clean, renewable energy, scientists from the U.S. Department of Energy's Brookhaven National Laboratory have determined how titanium atoms help hydrogen ...

Recommended for you

Rosetta captures comet outburst

August 25, 2016

In unprecedented observations made earlier this year, Rosetta unexpectedly captured a dramatic comet outburst that may have been triggered by a landslide.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.