Light activated anticancer drug targeted to DNA using cisplatin like sub-units

Mar 27, 2006

One of the most effective chemotherapy drugs against cancer is cisplatin because it attaches to cancer DNA and disrupts repair. However, it also kills healthy tissue. Many scientists are creating alternative drugs or cisplatin analogs in attempts to find treatments without side effects. One approach to analog development is light activated drugs, or photodynamic therapy (PDT).

Now a Virginia Tech chemistry-biology research team that has been working on both non-cisplatin drugs and cisplatin analogs has combined their findings to create a molecular complex (supramolecule) that exploits cisplatins tumor targeting to deliver a light activated drug.

The latest results from the group's research to create a DNA targeting, light activated anticancer drug was presented at the 231st American Chemical Society national meeting in Atlanta on March 26-30.

Chemistry professor Karen J. Brewer reports that the group has developed supramolecular complexes that combine light-absorbing PDT agents and cisplatin like units. Previous anticancer molecules created by the group have contained platinum-based molecules that bind DNA. They have also developed new light activated systems able to photocleave DNA. This report combines these two approaches to target the drug to DNA using cisplatin like units, directing the light activation to tumor cells and the sub-cellular target, DNA.

"In the past, our light activated systems had to find the DNA within the cell, an often inefficient process. Now we have added the DNA targeting drug," Brewer said. "We were working on cisplatin analogs before, so we have tied it to light activated systems."

Cisplatin begins its interaction with cancer DNA by binding to the nitrogen atoms of the DNA bases, typically guanine. Our new supramolecules use this nitrogen-binding site to hold the light activated drug at the target until signaled to activate. Thus the new supramolecules can be delivered to the tumor site but remain inert until activated by a light signal. Light waves in the therapeutic range – that is, those that can penetrate tissue, are used to activate these new drugs. The researchers are also appending other molecules that emit UV light to track the movement of these drugs within cells.

Source: Virginia Tech

Explore further: Study links credit default swaps, mortgage delinquencies

Related Stories

11 new species come to light in Madagascar

5 hours ago

Madagascar is home to extraordinary biodiversity, but in the past few decades, the island's forests and associated biodiversity have been under greater attack than ever. Rapid deforestation is affecting the ...

Sodium selective DNAzyme sensor

May 11, 2015

(Phys.org)—Sodium ions are key regulators in cellular processes. The fluids in cells, whether it is water, blood plasma, or nutrients, are regulated by the sodium concentration in cells. If scientists could ...

Recommended for you

Study links credit default swaps, mortgage delinquencies

25 minutes ago

Researchers at The University of Texas at Dallas recently published the first empirical investigation connecting credit default swaps to mortgage defaults that helped lead to the 2007-2008 financial crisis.

Probing Question: Is art an essential school subject?

55 minutes ago

For decades, "reading, writing, and 'rithmetic" were considered the most fundamental subjects in American K-12 schools. These days, in order to boost our nation's global competitiveness, many schools and ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.