Toshiba and NEC Develop World's Fastest, Highest Density MRAM

February 7, 2006
Toshiba and NEC Develop World's Fastest, Highest Density MRAM
Mechanism of reduced electrical resistance in wiring for writing: The resistance per wiring was reduced by 38% by adopting new wiring method which forks writing current.

Toshiba Corporation and NEC Corporation today announced that they have developed a magnetoresistive random access memory (MRAM) that combines the highest density with the fastest read and write speed yet achieved. The new MRAM achieves a 16-megabit density and a read and write speed of 200-megabytes a second, and also secures low voltage operation of 1.8V.

A major challenge of MRAM development to date has been the acceleration of read speeds: the current drive circuit used to generate the magnetic field for writing degrades read operation from memory cells. The new MRAM has an improved circuit design that divides the current paths for reading and writing, realizing a faster read speed. It also reduces equivalent resistance in wiring by approximately 38% by forking the write current. These innovations together achieve a read and write speed of 200-megabytes a second and a cycle time of 34 nanoseconds — both the world's best performance for MRAM. This performance is underlined by a low operating voltage of only 1.8V, the ideal voltage for mobile digital products.

Alongside advances in performance, the new MRAM achieves advances in chip size. Toshiba and NEC have introduced the above mentioned technologies and optimized overall circuit design, achieving a chip that, at 78.7mm2, is approximately 30% smaller than its equivalent without the new circuit design. The new MRAM is the world's smallest in the 16-megabit era.

MRAM is expected to be a next-generation non-volatile memory that retains data when powered off and that achieves fast random access speeds and unlimited endurance in operation.

Development of these new MRAM technologies was supported by grants from Japan's New Energy and Industrial Technology Development Organization (NEDO).

Full details of the new technology were presented on February 6 at ISSCC (International Solid-State Circuits Conference) 2006 in San Francisco, USA.

Source: NEC

Explore further: Shift from electronics to spintronics opens up possibilities of faster data

Related Stories

Superconducting circuits, simplified

October 17, 2014

Computer chips with superconducting circuits—circuits with zero electrical resistance—would be 50 to 100 times as energy-efficient as today's chips, an attractive trait given the increasing power consumption of the massive ...

Engineers develop new magnetoelectric computer memory

December 14, 2012

(—By using electric voltage instead of a flowing electric current, researchers from UCLA's Henry Samueli School of Engineering and Applied Science have made major improvements to an ultra-fast, high-capacity class ...

Recommended for you

Trade in invasive plants is blossoming

October 3, 2015

Every day, hundreds of different plant species—many of them listed as invasive—are traded online worldwide on auction platforms. This exacerbates the problem of uncontrollable biological invasions.

How much for that Nobel prize in the window?

October 3, 2015

No need to make peace in the Middle East, resolve one of science's great mysteries or pen a masterpiece: the easiest way to get yourself a Nobel prize may be to buy one.

Drone market to hit $10 billion by 2024: experts

October 3, 2015

The market for military drones is expected to almost double by 2024 to beyond $10 billion (8.9 billion euros), according to a report published Friday by specialist defence publication IHS Jane's Intelligence Review.

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.