Researchers 'rewrite the book' in quantum statistical physics

February 9, 2006

An important part of the decades-old assumption thought to be essential for quantum statistical physics is being challenged by researchers at Rutgers, The State University of New Jersey, and colleagues in Germany and Italy.

In a journal article to be published in Physical Review Letters and now available online, the researchers show that it is not necessary to assume that large collections of atomic particles are in a random state in order to derive a mathematical formula that conveys that smaller collections of those particles are indeed random. While their proof is unlikely to change any of today's high-tech products and processes, it could nonetheless lead to rewrites of tomorrow's physics textbooks.

For decades, physicists believed that an assumption of randomness accounts for the canonical distribution formula at the heart of statistical mechanics, a field that helps scientists understand the structure and properties of materials. Randomness remains a necessary foundation to derive this formula for systems governed by the principles of classical mechanics. But the basic constituents of materials reside at the atomic and subatomic levels, where the principles of quantum mechanics take hold. The researchers have found that for quantum systems the situation is quite different than physicists had believed.

"What we have found is so simple that it is surprising that it was not discovered long ago," said Sheldon Goldstein, professor of mathematics and physics at Rutgers and one of the paper's four authors. "More surprising still is the fact that Erwin Schroedinger, one of the founders of quantum mechanics, had the essential idea more than fifty years ago, and this was entirely unappreciated."

The other authors of the journal article, titled "Canonical Typicality," are Joel Lebowitz, professor of mathematics and physics at Rutgers; Roderich Tumulka, assistant professor of mathematics at the University of Tuebingen in Germany; and Nino Zanghi, professor of physics at the University of Genoa in Italy.

Source: Rutgers, the State University of New Jersey

Explore further: Small entropy changes allow quantum measurements to be nearly reversed

Related Stories

Titan helps unpuzzle decades-old plutonium perplexities

September 29, 2015

First produced in 1940, plutonium is one of the most electronically complicated elements on Earth—and because of its complexities, scientists have been struggling to prove the existence of its magnetic properties ever since.

'Golden' silver nanoparticle looks and behaves like gold

September 22, 2015

(—In an act of "nano-alchemy," scientists have synthesized a silver (Ag) nanocluster that is virtually identical to a gold (Au) nanocluster. On the outside, the silver nanocluster has a golden yellow color, and ...

Recommended for you

Internet giants race to faster mobile news apps

October 4, 2015

US tech giants are turning to the news in their competition for mobile users, developing new, faster ways to deliver content, but the benefits for struggling media outlets remain unclear.

The dark side of Nobel prizewinning research

October 4, 2015

Think of the Nobel prizes and you think of groundbreaking research bettering mankind, but the awards have also honoured some quite unhumanitarian inventions such as chemical weapons, DDT and lobotomies.

Trade in invasive plants is blossoming

October 3, 2015

Every day, hundreds of different plant species—many of them listed as invasive—are traded online worldwide on auction platforms. This exacerbates the problem of uncontrollable biological invasions.

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.