Quantum breakup is no heartbreaker

February 14, 2006
Quantum

Getting together and breaking up is hard to do, but splitting a quantum couple is even more difficult.

In this case, the couples involve pairs of quantum bits, or qubits, and each bit represents a piece of information. Controlling quantum bits so that they communicate, or couple, with some but not all of the other quantum bits is one of the fundamental problems in developing a quantum computer, said Franco Nori, physics professor at the University of Michigan, and also with RIKEN, in Japan.

The inability to control and direct qubits and turn their interactions on and off selectively makes it impossible to do quantum information processing.

Quantum computing is promising because such computers—if developed—will process information thousands of times faster than conventional computers, but researchers are still a long way off from building the first large-scale quantum computer.

Nori’s team proposes a new method to control coupling and de-coupling by tuning the frequency of qubits. Simply put, qubits in the same frequency communicate, those on different frequencies do not—think of interconnected microscale radios.

“This tuning frequency method should facilitate the implementation of quantum information processing by using superconducting quantum circuits,” Nori said.

The circuits may be scaled up to many qubits by applying certain external frequencies to the qubits. Those qubits with the correct frequencies are allowed to connect through the line.

“Similarly to a radio, qubits can be "in tune" with each other or out of tune, and thus decoupled,” Nori said. “Choosing appropriate frequencies requires varying these frequencies, so the radio can tune to different stations at different times. Similarly, qubits can tune to different qubits at different times by varying the frequency of the applied magnetic field.”

The paper, “Controllable Coupling Between Flux Qubits,” will be published online Feb. 15 at Physical Review Letters, the Journal of the American Physical Society.

Source: University of Michigan

Explore further: Colors from darkness: Researchers develop alternative approach to quantum computing

Related Stories

New single-photon microwave source developed

August 25, 2016

A collaboration including researchers at the National Physical Laboratory (NPL) has developed a tuneable, high-efficiency, single-photon microwave source. The technology has great potential for applications in quantum computing ...

Bridging the gap between the quantum and classical worlds

August 2, 2016

In the quantum world, physicists study the tiny particles that make up our classical world - neutrons, electrons, photons - either one at a time or in small numbers because the behaviour of the particles is completely different ...

Recommended for you

First stars formed even later than previously thought

August 31, 2016

ESA's Planck satellite has revealed that the first stars in the Universe started forming later than previous observations of the Cosmic Microwave Background indicated. This new analysis also shows that these stars were the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.