Neutron Star Swaps Lead to Short Gamma-Ray Bursts

Feb 02, 2006
Neutron Star Swaps Lead to Short Gamma-Ray Bursts
The photograph at left shows the galactic globular cluster M15, which contains a double neutron star system that will eventually collide to create a gamma-ray burst, as shown in the inset images at right. The right-hand images are taken from a computer animation and shows several snapshots covering just a fraction of a second in total time, with time advancing from top to bottom. Recent research shows that such collisions may be the source of up to 30 percent of all short gamma-ray bursts observed from Earth. M15 Image Credit: NOAO/AURA/NSF; Merger Image Credit: NASA / Dana Berry

Gamma-ray bursts are the most powerful explosions in the universe, emitting huge amounts of high-energy radiation. For decades their origin was a mystery. Scientists now believe they understand the processes that produce gamma-ray bursts.

However, a new study by Jonathan Grindlay of the Harvard-Smithsonian Center for Astrophysics (CfA) and his colleagues, Simon Portegies Zwart (Astronomical Institute, The Netherlands) and Stephen McMillan (Drexel University), suggests a previously overlooked source for some gamma-ray bursts: stellar encounters within globular clusters.

"As many as one-third of all short gamma-ray bursts that we observe may come from merging neutron stars in globular clusters," said Grindlay.

Gamma-ray bursts (GRBs) come in two distinct "flavors." Some last up to a minute, or even longer. Astronomers believe those long GRBs are generated when a massive star explodes in a hypernova. Other bursts last for only a fraction of a second. Astronomers theorize that short GRBs originate from the collision of two neutrons stars, or a neutron star and a black hole.

Most double neutron star systems result from the evolution of two massive stars already orbiting each other. The natural aging process will cause both to become neutron stars (if they start with a given mass), which then spiral together over millions or billions of years until they merge and release a gamma-ray burst.

Grindlay's research points to another potential source of short GRBs - globular clusters. Globular clusters contain some of the oldest stars in the universe crammed into a tight space only a few light-years across. Such tight quarters provoke many close stellar encounters, some of which lead to star swaps. If a neutron star with a stellar companion (such as a white dwarf or main-sequence star) exchanges its partner with another neutron star, the resulting pair of neutron stars will eventually spiral together and collide explosively, creating a gamma-ray burst.

"We see these precursor systems, containing one neutron star in the form of a millisecond pulsar, all over the place in globular clusters," stated Grindlay. "Plus, globular clusters are so closely packed that you have a lot of interactions. It's a natural way to make double neutron-star systems."

The astronomers performed about 3 million computer simulations to calculate the frequency with which double neutron-star systems can form in globular clusters. Knowing how many have formed over the galaxy's history, and approximately how long it takes for a system to merge, they then determined the frequency of short gamma-ray bursts expected from globular cluster binaries. They estimate that between 10 and 30 percent of all short gamma-ray bursts that we observe may result from such systems.

This estimate takes into account a curious trend uncovered by recent GRB observations. Mergers and thus bursts from so-called "disk" neutron-star binaries - systems created from two massive stars that formed together and died together - are estimated to occur 100 times more frequently than bursts from globular cluster binaries. Yet the handful of short GRBs that have been precisely located tend to come from galactic halos and very old stars, as expected for globular clusters.

"There's a big bookkeeping problem here," said Grindlay.

To explain the discrepancy, Grindlay suggests that bursts from disk binaries are likely to be harder to spot because they tend to emit radiation in narrower blasts visible from fewer directions. Narrower "beaming" might result from colliding stars whose spins are aligned with their orbit, as expected for binaries that have been together from the moment of their birth. Newly joined stars, with their random orientations, might emit wider bursts when they merge.

"More short GRBs probably come from disk systems - we just don't see them all," explained Grindlay.

Only about a half dozen short GRBs have been precisely located by gamma-ray satellites recently, making thorough studies difficult. As more examples are gathered, the sources of short GRBs should become much better understood.

The paper announcing this finding was published in the January 29 online issue of Nature Physics. It is available online at www.nature.com/nphys/index.html and in preprint form at arxiv.org/abs/astro-ph/0512654

Source: Harvard-Smithsonian Center for Astrophysics

Explore further: Dawn spirals closer to Ceres, returns a new view

Related Stories

How to get high-quality RNA from chemically complex plants

19 minutes ago

Ask any molecular plant biologist about RNA extractions and you might just open up the floodgates to the woes of troubleshooting. RNA extraction is a notoriously tricky and sensitive lab procedure. New protocols out of the ...

DNA mutations get harder to hide

23 minutes ago

Rice University researchers have developed a method to detect rare DNA mutations with an approach hundreds of times more powerful than current methods.

From worker to queen at the drop of a gene

24 minutes ago

Biologists from the University of Leicester have discovered that one of nature's most important pollinators - the buff-tailed bumblebee – either ascends to the status of queen or remains a lowly worker ...

Recommended for you

Dawn spirals closer to Ceres, returns a new view

5 hours ago

A new view of Ceres, taken by NASA's Dawn spacecraft on May 23, shows finer detail is becoming visible on the dwarf planet. The spacecraft snapped the image at a distance of 3,200 miles (5,100 kilometers) ...

NASA telescopes set limits on space-time quantum 'foam'

10 hours ago

A team of scientists has used X-ray and gamma-ray observations of some of the most distant objects in the universe to better understand the nature of space and time. Their results set limits on the quantum ...

Shining message about the end of the Dark Ages

13 hours ago

An international team, including researchers from the Centre for Astronomy of Heidelberg University (ZAH), has discovered three "cosmic Methusalems" from the earliest years of the universe. These unusual stars are about 13 ...

The kinematics of merging galaxies

13 hours ago

The unprecedented sensitivity of space telescopes has powered a revolution over the past decade in our understanding of galaxies in the young universe during its first billion years of existence. These primitive ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.