Nanoscience study shows that quantum dots 'talk'

February 21, 2006
Nanoscience study shows that quantum dots 'talk'

Scientists who hope to use quantum dots as the building blocks for the next generation of computers have found a way to make these artificial atoms communicate.

"Essentially, the dots talk to each other," said Ameenah Al-Ahmadi, an Ohio University doctoral student who published the findings with Professor of Physics Sergio Ulloa in a recent issue of the journal Applied Physics Letters.

The dots are tiny, engineered spherical crystals about 5 nanometers in diameter. An average biological cell, in comparison, has a diameter of about 1,000 nanometers. Researchers believe that quantum dots will be extremely useful in developing nanoscale technologies because they are versatile and uniform, which could eliminate possible variations and flaws in materials.

In the recent study, the researchers were the first to use theoretical models to show how light energy shining on quantum dots would prompt them to transfer energy in a "coherent" fashion. They found that when the dots were arranged a certain distance from each other – greater than the radius of the dots – light waves traveled between the nanocrystals in a consistent pattern. In previous research, the light's wavelength would change or become irregular during the energy exchange, which creates a breakdown in communication between quantum dots.

The results suggest that there could be a way to transmit information using light waves, laying the groundwork for a possible optical quantum computer. In this device, light energy would replace the electrical charge currently used to transfer information in conventional computers.

"The idea is to make the (computing) process faster and smaller," said Al-Ahmadi.

The applications of the new quantum dot technology also could include medical imaging. Quantum dots could be injected into the patient, and a device containing more quantum dots could be used to show the position of dots under the skin. Current biology research has had great success with this type of imaging in mouse models, Ulloa said. The dots have fewer side effects than contrast chemicals used in X-rays, and may eventually replace traditional contrast media.

Using light energy instead of electricity also would help keep computer temperatures low, as the light energy does not create as much heat as electrical current, Al-Ahmadi added.

Source: Ohio University (by Christina Dierkes)

Explore further: Controlling the magnetic properties of individual iron atoms

Related Stories

Controlling the magnetic properties of individual iron atoms

January 29, 2016

The Fe2+ atom embedded in a semiconductor exhibits a single non-degenerate ground state of zero magnetic moment. A team of scientists from the University of Warsaw has just shown that by using a sufficiently large strain, ...

Five tech categories to watch at CES

January 5, 2016

CES doesn't always present a clear picture of technology trends. Longtime technology journalist Harry McCracken likened the consumer-electronics show to a circus fun house mirror, exaggerating the importance of some technologies ...

Electrons always find a (quantum) way

November 17, 2015

Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel have demonstrated for the first time how electrons are transported from a superconductor through a quantum dot into ...

Quantum dots used to convert infrared light to visible light

December 1, 2015

(Phys.org)—A team of researchers at MIT has succeeded in creating a double film coating that is able to convert infrared light at modest intensities into visible light. In their paper published in the journal Nature Photonics, ...

Recommended for you

Physicists create first photonic Maxwell's demon

February 12, 2016

(Phys.org)—Maxwell's demon, a hypothetical being that appears to violate the second law of thermodynamics, has been widely studied since it was first proposed in 1867 by James Clerk Maxwell. But most of these studies have ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.