Nano World: Nanotubes arrayed on sapphire

February 10, 2006

Crystalline sapphire could help steer carbon nanotubes into orderly rows to create transistors and flexible electronics with, experts told UPI's Nano World.

For decades, chipmakers have shrunk circuits smaller and smaller. The problem is conventional silicon circuitry is expected to reach a physical limit of about 10 nanometers in the next 15 years or so, the San Jose, Calif.-headquartered Semiconductor Industry Alliance has noted. Scientists are experimenting with carbon nanotubes as future alternatives, which are already roughly one or two nanometers wide. The problem is that it currently requires time-consuming labor to maneuver these nanotubes into place.

Instead, electrical engineer Chongwu Zhou at University of Southern California in Los Angeles and his team investigated if the surfaces nanotubes are grown on could automatically guide them. He and his colleagues found that sapphire could orient nanotubes into arrays. Sapphire crystals are much like hexagonal towers in shape, and most vertical cuts of sapphire presents its aluminum and oxygen atoms in arrangements that promote aligned growth.

Zhou and his colleagues then created transistors using these arrays. Once the researchers grow aligned nanotubes on top of sapphire, the researchers fabricate metal electrodes of transistors where they wish and eliminate superfluous nanotubes using oxygen plasma. The scientists report their findings in the journal Nano Letters.

In the past, carbon nanotube transistors usually were built on top of silicon composites widespread in the electronics industry. The problem was that when combined, the electrically conductive metal electrodes and the semiconducting silicon behaved like a capacitor, a device that stores electrical charge. This new method gets rid of this parasitic drain, which increases power consumption and slows performance, because sapphire is not semiconducting like silicon, but an electrical insulator.

By cooking a plastic onto transistors in an oven and peeling them off, Zhou and his team could easily develop flexible electronics. Such flexible electronics could find use in large flat panel displays, Zhou said.

"Overall, he is in the right track trying to solve a scientific question that has practical ramification," stated Ali Keshavarzi, a research scientist at Intel's circuit research labs in Hillsboro, Ore. In terms of future directions Zhou and his colleagues should take, "he has packed about 40 tubes per one micron of width and we should reach hundreds. He should also worry about carbon nanotube diameter control to make sure these arrays of tubes have rather uniform diameters," Keshavarzi added.

Copyright 2006 by United Press International

Explore further: Development of technology for producing micro-scale interconnect from multi-layer graphene

Related Stories

Recommended for you

Most EU nations seek to bar GM crops

October 4, 2015

Nineteen of the 28 EU member states have applied to keep genetically modified crops out of all or part of their territory, the bloc's executive arm said Sunday, the deadline for opting out of new European legislation on GM ...

The dark side of Nobel prizewinning research

October 4, 2015

Think of the Nobel prizes and you think of groundbreaking research bettering mankind, but the awards have also honoured some quite unhumanitarian inventions such as chemical weapons, DDT and lobotomies.

Internet giants race to faster mobile news apps

October 4, 2015

US tech giants are turning to the news in their competition for mobile users, developing new, faster ways to deliver content, but the benefits for struggling media outlets remain unclear.

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.