Michigan State research sheds new light on health dangers of nanoparticles

Feb 17, 2006

The nose, usually the first line of defense against inhaled airborne particles that could damage the lungs, may itself be susceptible to the dangers of extremely small particles, called nanoparticles, which are less than 100 nanometers in size. One nanometer is one-billionth of a meter.

According to research presented by Michigan State University researchers at seminar at the annual American Association for the Advancement of Science conference titled "Nanotechnology 2006: Toxicology of Nanoparticles," combustion-derived nanoparticles, or CDNPs, have the ability to collect in the nasal airways, potentially causing a number of ailments, including rhinitis, inflammation of the mucous membranes.

CDNPs are byproducts of coal-fired power plants, waste incinerators and diesel-powered vehicles. They are also found in the production of carbon black, an elemental carbon that is widely used in rubber tires, gaskets, and in pigments for paints, plastics and inks.

"This is concerning because carbon black can be found practically anywhere," said Jack Harkema, a University Distinguished Professor of pathobiology and diagnostic investigation at MSU, who conducted the research with colleagues from the University of Rochester. "It's found in ink jet printers, car tires, pretty much anything that is black. However, our primary concern is the potential adverse health effects to people who manufacture large amounts of these CDNPs and are daily exposed to these nanoparticles."

Most of the toxicology studies of inhaled nanoparticles have focused on its harmful effects on the lung. However, nasal toxicity of nanoparticles has not been previously examined.

"This study was the first to show that inhaled nanoparticless of any sort can cause nasal pathology such as rhinitis, epithelial cell injury, and remodeling of the nasal mucous membranes that may compromise its function for smell and for defending the lung from harmful airborne agents," Harkema said.

In the laboratory, carbon black NPs are often used as surrogates for other CDNPs, like those found in diesel exhaust, to identify which physical or chemical features of extremely small particles are most responsible for their toxic effects to cells and tissues in the nose and lungs. This knowledge is important for setting occupational and environmental exposure limits to maintain air quality and protect human health.

The fact that the nasal passages could be susceptible to the dangers of such nanoparticles is alarming because the nose, in addition to its smelling duties, serves to not only humidify and warm inhaled air, but also filter it.

"It basically acts as a scrubbing tower, removing inhaled gases, vapors and small airborne particles – including nanoparticles – that may be harmful to the lung," he said. "It turns out, nasal airways may also be targets of toxicity caused by inhaled nanoparticles."

To look into the potential toxicity of these carbon black nanoparticles, Harkema and colleagues exposed laboratory rodents to high levels of the material. They found that rats developed a number of lesions on the surface epithelium, or the lining, of the nasal airways, as well as rhinitis, an inflammation of the mucous membranes of the nasal airways. They also found that the smaller the size of the NPs the more severe the toxic injury to the noses of these exposed rats.

Mice had similar but less severe rhinitis and epithelial lesions, while hamsters did not develop rhinitis at all and only minimal alterations to the nasal epithelium. Why one rodent species is more susceptible to nasal injury than another is not yet known.

Although the effects of inhaled nanoparticles on humans have yet to be determined, "these initial findings in laboratory rodents suggest that our nose, like our lungs, is a potential target organ for toxicity of inhaled NPs," Harkema said.

Source: Michigan State University

Explore further: A stretchy mesh heater for sore muscles

Related Stories

Tiny inhaled particles take easy route from nose to brain

Aug 02, 2006

In a continuing effort to find out if the tiniest airborne particles pose a health risk, University of Rochester Medical Center scientists showed that when rats breathe in nano-sized materials they follow a rapid and efficient ...

Nanotoxicology - new branch of learning

Aug 30, 2004

Nanotechnology, the 'science of small things' is set to bring huge advantages in engineering, electronics, medicine and IT-- but the potential threats to health that widespread use of nanoparticles could bring need to be s ...

Recommended for you

A stretchy mesh heater for sore muscles

Jul 03, 2015

If you suffer from chronic muscle pain a doctor will likely recommend for you to apply heat to the injury. But how do you effectively wrap that heat around a joint? Korean Scientists at the Center for Nanoparticle ...

Polymer mold makes perfect silicon nanostructures

Jul 03, 2015

Using molds to shape things is as old as humanity. In the Bronze Age, the copper-tin alloy was melted and cast into weapons in ceramic molds. Today, injection and extrusion molding shape hot liquids into ...

Better memory with faster lasers

Jul 02, 2015

DVDs and Blu-ray disks contain so-called phase-change materials that morph from one atomic state to another after being struck with pulses of laser light, with data "recorded" in those two atomic states. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.