Andromeda's Stellar Halo Shows Galaxy's Origin to Be Similar to That of Milky Way

Feb 28, 2006
The Milky Way Galaxy

For the last decade, astronomers have thought that the Andromeda galaxy, our nearest galactic neighbor, was rather different from the Milky Way. But a group of researchers have determined that the two galaxies are probably quite similar in the way they evolved, at least over their first several billion years.

In an upcoming issue of the Astrophysical Journal, Scott Chapman of the California Institute of Technology, Rodrigo Ibata of the Observatoire de Strasbourg, and their colleagues report that their detailed studies of the motions and metals of nearly 10,000 stars in Andromeda show that the galaxy's stellar halo is "metal-poor." In astronomical parlance, this means that the stars lying in the outer bounds of the galaxy are pretty much lacking in all the elements heavier than hydrogen.

This is surprising, says Chapman, because one of the key differences thought to exist between Andromeda and the Milky Way was that the former's stellar halo was metal-rich and the latter's was metal-poor. If both galaxies are metal-poor, then they must have had very similar evolutions.

"Probably, both galaxies got started within a half billion years of the Big Bang, and over the next three to four billion years, both were building up in the same way by protogalactic fragments containing smaller groups of stars falling into the two dark-matter haloes," Chapman explains.

While no one yet knows what dark matter is made of, its existence is well established because of the mass that must exist in galaxies for their stars to orbit the galactic centers the way they do. Current theories of galactic evolution, in fact, assume that dark-matter wells acted as a sort of "seed" for today's galaxies, with the dark matter pulling in smaller groups of stars as they passed nearby. What's more, galaxies like Andromeda and the Milky Way have each probably gobbled up about 200 smaller galaxies and protogalactic fragments over the last 12 billion years.

Chapman and his colleagues arrived at the conclusion about the metal-poor Andromeda halo by obtaining careful measurements of the speed at which individual stars are coming directly toward or moving directly away from Earth. This measure is called the radial velocity, and can be determined very accurately with the spectrographs of major instruments such as the 10-meter Keck-II telescope, which was used in the study.

Of the approximately 10,000 Andromeda stars for which the researchers have obtained radial velocities, about 1,000 turned out to be stars in the giant stellar halo that extends outward by more than 500,000 light-years. These stars, because of their lack of metals, are thought to have formed quite early, at a time when the massive dark-matter halo had captured its first protogalactic fragments.

The stars that dominate closer to the center of the galaxy, by contrast, are those that formed and merged later, and contain heavier elements due to stellar evolution processes.

In addition to being metal-poor, the stars of the halo follow random orbits and are not in rotation. By contrast, the stars of Andromeda's visible disk are rotating at speeds upwards of 200 kilometers per second.

According to Ibata, the study could lead to new insights on the nature of dark matter. "This is the first time we've been able to obtain a panoramic view of the motions of stars in the halo of a galaxy," says Ibata. "These stars allow us to weigh the dark matter, and determine how it decreases with distance."

In addition to Chapman and Ibata, the other authors are Geraint Lewis of the University of Sydney; Annette Ferguson of the University of Edinburgh; Mike Irwin of the Institute of Astronomy in Cambridge, England; Alan McConnachie of the University of Victoria; and Nial Tanvir of the University of Hertfordshire.

Source: Caltech

Explore further: New Horizons spacecraft experiences anomaly

Related Stories

Giant galaxy is still growing

Jun 25, 2015

New observations with ESO's Very Large Telescope have revealed thatthe giant elliptical galaxy Messier 87 has swallowed an entire medium-sized galaxy over the last billion years. For the first time a team ...

Astronomers image rare stellar cluster Liller 1

Jun 17, 2015

Scientists have imaged a cluster of stars, heavily obscured by material in our galaxy, where stars are so densely packed that it is likely a rare environment where stars can collide. "It's a bit like a stellar ...

Lost in space: New Hubble image of galaxy NGC 6503

Jun 10, 2015

Although the Universe may seem spacious most galaxies are clumped together in groups or clusters and a neighbour is never far away. But this galaxy, known as NGC 6503, has found itself in a lonely position, ...

The cosmic evolution of galaxies

May 11, 2015

Our knowledge of the big bang has increased dramatically in the past decade, as satellites and ground-based studies of the cosmic microwave background have refined parameters associated with the very early ...

Recommended for you

New Horizons spacecraft experiences anomaly

7 hours ago

The New Horizons spacecraft experienced an anomaly the afternoon of July 4 that led to a loss of communication with Earth. Communication has since been reestablished and the spacecraft is healthy.

Dwarf planet Ceres offers big surprises for scientists

7 hours ago

The closer we get to Ceres, the more perplexing the dwarf planet grows. NASA's Dawn spacecraft has found several more bright spots as well as a pyramid-like peak jutting out of the frigid world's surface.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.