Titania Nanotube Arrays Harness Solar Energy

January 25, 2006
Titania Nanotube Arrays Harness Solar Energy
FESEM image of titania nanotube arrays, top and lateral views.

Penn State researchers are finding new ways to harness the power of the sun using highly-ordered arrays of titania nanotubes for hydrogen production and increased solar cell efficiency.

Creating a renewable energy resource to supplement and ultimately replace dwindling petroleum reserves is one of the pressing needs our nation faces within our own and our children’s lifetimes. But gasoline, an almost perfect fuel, with a tremendous amount of power contained in a small cupful, is not easy to replace.

One of the most likely prospects for an efficient renewable resource is solar energy, either to produce hydrogen, the third most abundant element on the earth’s surface, or to power solar cells. At Penn State University, researchers are finding new ways to harness the power of the sun using highly-ordered arrays of titania nanotubes for hydrogen production and increased solar cell efficiency.

“This is an amazing material architecture for water photolysis,” says Craig Grimes, professor of electrical engineering and materials science and engineering. Referring to some recent finds of his research group (G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Enhanced Photocleavage of Water Using Titania Nanotube-Arrays, Nano Letters, vol. 5, pp. 191-195.2005 ), “Basically we are talking about taking sunlight and putting water on top of this material, and the sunlight turns the water into hydrogen and oxygen. With the highly-ordered titanium nanotube arrays, under UV illumination you have a photoconversion efficiency of 13.1%. Which means, in a nutshell, you get a lot of hydrogen out of the system per photon you put in. If we could successfully shift its bandgap into the visible spectrum we would have a commercially practical means of generating hydrogen by solar energy. It beats fighting wars over middle-eastern oil.”

Integration of transparent nanotube array architecture into dye solar cell structure.
Integration of transparent nanotube array architecture into dye solar cell structure.

The highly ordered nanotube arrays also demonstrate remarkable properties when used in solar cells, as reported in the Vol. 6 No. 2 issue of Nano Letters; the Grimes’ team, which includes Gopal K. Mor, Karthik Shankar, Maggie Paulose, and Oomman K. Varghese, describes the initial results of their application of highly-ordered transparent titania nanotubes on the negative electrode in dye solar cells. This type of solar cell shows great promise as a relatively low cost solution to efficiently producing electricity from the sun.

According to the authors, the highly ordered nanotube arrays provide excellent pathways for electron percolation, in effect acting as ‘electron highways’ for directing the photo-generated electrons to where they can do useful work. Their results suggest that highly-efficient dye solar cells could be made simply by increasing the length of the nanotube arrays. Grimes and colleagues feel that solutions to this and other processing issues are within reach and will result in a considerable, possibly quite dramatic increase in solar cell efficiency.

On the web: www.mri.psu.edu

Source: Penn State

Explore further: Alien solar system boasts tightly spaced planets, unusual orbits

Related Stories

Juno peers inside a giant

June 29, 2016

NASA's Juno spacecraft will make its long anticipated arrival at Jupiter on July 4. Coming face-to-face with the gas giant, Juno will begin to unravel some of the greatest mysteries surrounding our solar system's largest ...

Recommended for you

2016 climate trends continue to break records

July 19, 2016

Two key climate change indicators—global surface temperatures and Arctic sea ice extent—have broken numerous records through the first half of 2016, according to NASA analyses of ground-based observations and satellite ...

Historical records miss a fifth of global warming: NASA

July 22, 2016

A new NASA-led study finds that almost one-fifth of the global warming that has occurred in the past 150 years has been missed by historical records due to quirks in how global temperatures were recorded. The study explains ...

Plant cellulose prevents short circuits in batteries

July 22, 2016

(Phys.org)—In order to prevent short circuits in batteries, porous separator membranes are often placed between a battery's electrodes. There is typically a tradeoff involved, since these separators must simultaneously ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.