Sonofusion Bubbles Up

Jan 12, 2006

Sonofusion works, according the latest volley in the argument over the feasibility of acoustically driven nuclear fusion.

A collaboration of researchers from Purdue University and Rensselaer Polytechnic Institute has detected neutrons, with energies typical of certain fusion reactions, emanating from a container of a specially prepared mixture of benzene and acetone that was exposed to high frequency sound waves.

The sound waves produce tiny bubbles, which expand and then rapidly contract, generating high temperatures that the researchers believe lead to nuclear fusion reactions. The group announced similar results about two years ago, but faced ardent criticism over aspects of their experimental set up that could have created false positives in their data. In the earlier experiments they had used a beam of neutrons in an attempt to initiate the bubbles leading to sonofusion reactions.

Critics claimed the beam could have been mistaken for neutrons emitted by fusion reactions. In the new experiments, the researchers dissolved natural uranium into the solution, which acts as a source of bubble-initiating neutrons. They claim that the new technique eliminates any confusion in identifying the neutrons they measured coming from the experiment as the products of sonofusion reactions.

Publication: R. P. Taleyarkhan, C. D. West, R. T. Lahey Jr., R. I. Nigmatulin, R. C. Block, Y. Xu Physical Review Letters (upcoming article)

Source: American Physical Society

Explore further: Decoding the brain: Scientists redefine and measure single-neuron signal-to-noise ratio

Related Stories

Recommended for you

The ins and outs of quantum chromodynamics

16 hours ago

Quarks and antiquarks are the teeny, tiny building blocks with which all matter is built, binding together to form protons and neutrons in a process explained by quantum chromodynamics (QCD).

Engineers give invisibility cloaks a slimmer design

17 hours ago

Researchers have developed a new design for a cloaking device that overcomes some of the limitations of existing "invisibility cloaks." In a new study, electrical engineers at the University of California, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.