Simulation Program Predicts Resistivity in Nanodevices

Jan 17, 2006

As nanoscale circuits continue to shrink, electrical resistivity increases in the wiring and limits the maximum circuit speed. A new simulation program developed by researchers at the National Institute of Standards and Technology and George Washington University can be used to predict such increases with greater input flexibility and model accuracy than other methods. The software program is expected to help the semiconductor industry design and test devices more efficiently and with greater cost-effectiveness.

On average, an electron can travel only 39 nanometers in pure, bulk copper at room temperature before it is scattered by thermal vibrations of the copper atoms. But, as the dimensions of the wiring shrink, additional scattering by surfaces and grain boundaries within the metal lead to undesirable increases in resistivity. The NIST/GWU computer program, described in a recent paper in Microelectronics Reliability,* enables users to examine how these additional mechanisms alter the resistivity of the thin, narrow metal lines that make up the circuit wiring.

As described in the journal article, NIST researchers used the simulation program to demonstrate that, at critical nanoscale dimensions, electron scattering from surfaces and grain boundaries have effects that are interdependent. This interdependence could not be predicted using methods previously available. The finding has implications for both achievable circuit speed and electrical measurements of the dimensions of thin, narrow lines.

* A.E. Yarimbiyik, H.A. Schafft, R.A. Allen, M.E. Zaghloul, D.L. Blackburn. 2005. Modeling and simulation of resistivity of nanometer scale copper. Microelectronics Reliability. Posted online Dec. 19.

Source: NIST

Explore further: Project uses crowd computing to improve water filtration

Related Stories

Intelligent life in the universe? Phone home, dammit!

Jun 15, 2015

We've been conditioned by television and movies to accept the likelihood of intelligent life elsewhere in the Universe. "Of course there's intelligent life out there; I saw it last week on Star Trek." We've ...

I sprint for exercise: NASA's iRAT study

May 19, 2015

Run far or run fast? That is one of the questions NASA is trying to answer with one of its latest studies—and the answers may help keep us in shape on Earth, as well as in space. Even with regular exercise, ...

New begonia germplasm lines both beautiful and sturdy

May 13, 2015

Two new begonia germplasm lines developed by Agricultural Research Service and collaborating scientists are now available for use in breeding elite varieties of the ornamental crop that can tolerate the heat ...

Sustainability of the built environment

May 08, 2015

In times of limited resources and continued evidence of significant climate change, sustainability is increasingly regarded as a topic of global importance. Consider areas such as design, energy, and materials: ...

Recommended for you

Project uses crowd computing to improve water filtration

14 hours ago

Nearly 800 million people worldwide don't have access to safe drinking water, and some 2.5 billion people live in precariously unsanitary conditions, according to the Centers for Disease Control and Prevention. ...

Engineering the world's smallest nanocrystal

18 hours ago

In the natural world, proteins use the process of biomineralization to incorporate metallic elements into tissues, using it to create diverse materials such as seashells, teeth, and bones. However, the way ...

A stretchy mesh heater for sore muscles

Jul 03, 2015

If you suffer from chronic muscle pain a doctor will likely recommend for you to apply heat to the injury. But how do you effectively wrap that heat around a joint? Korean Scientists at the Center for Nanoparticle ...

Polymer mold makes perfect silicon nanostructures

Jul 03, 2015

Using molds to shape things is as old as humanity. In the Bronze Age, the copper-tin alloy was melted and cast into weapons in ceramic molds. Today, injection and extrusion molding shape hot liquids into ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.