Scientists stretch carbon nanotubes at high temperature

January 18, 2006
Scientists stretch carbon nanotubes at high temperature
Image updated: A single-walled carbon nanotube of 75 nanometers can stretch to 84 nanometers before it breaks. Image courtesy of Jianyu Huang.

Physicists at Boston College have for the first time shown that carbon nanotubes can be stretched at high temperature to nearly four times their original length, a finding that could have implications for future semiconductor design as well as in the development of new nanocomposites.

Single-walled carbon nanotubes are tiny cylinders thousands of times smaller than the width of a human hair but many times stronger than steel. The cylinders, which consist of carbon atoms interlinked in a hexagonal pattern, have novel properties that make them potentially useful in a wide range of applications.

At normal temperatures, carbon nanotubes snap when stretched to about 1.15 times their original length. But in a paper published in the Jan. 19, 2006, issue of the journal Nature, a team of physicists led by Boston College Research Associate Professor Jianyu Huang showed that at high temperatures nanotubes become extremely ductile. When heated to more than 2,000 degrees Celsius, one was stretched from 24 nanometres to 91 nanometres in length before it snapped.

The elongation was done by applying an electric current to the nanotube, which created a high temperature within the tiny structure and enabled the scientists to pull it like salt water taffy. Huang and his colleagues said their research indicates that nanotubes may be useful in strengthening ceramics and other nanocomposites at high temperatures.

At room temperature, a nanotube typically conducts electrons like a metal. But Huang said his team observed that when stretched under high temperature, a nanotube acts less like a metal and more like a semiconductor as the level of electrical current flowing through the structure falls. Huang said that raises the possibility that superplastic nanotubes could be used in developing new generations of computer chips.

Huang credited Boston College PhD student Shuo Chen with devising a special microscopic probe that allowed researchers to grab one end of the nanotube and stretch it while an electric current flowed through it. Other members of the team included Boston College physics faculty Zhifeng Ren, Ziqiang Wang and Kris Kempa; Boston College postdoctoral fellow Sung-Ho Jo; and professors Gang Chen and Mildred Dresselhaus at the Massachusetts Institute of Technology and Dr. Morris Wang at the Lawrence Livermore National Laboratory in California.

Source: Boston College t

Explore further: A new form of carbon: Grossly warped 'nanographene'

Related Stories

A new form of carbon: Grossly warped 'nanographene'

July 15, 2013

Chemists at Boston College and Nagoya University in Japan have synthesized the first example of a new form of carbon, the team reports in the most recent online edition of the journal Nature Chemistry.

Recommended for you

Most EU nations seek to bar GM crops

October 4, 2015

Nineteen of the 28 EU member states have applied to keep genetically modified crops out of all or part of their territory, the bloc's executive arm said Sunday, the deadline for opting out of new European legislation on GM ...

The dark side of Nobel prizewinning research

October 4, 2015

Think of the Nobel prizes and you think of groundbreaking research bettering mankind, but the awards have also honoured some quite unhumanitarian inventions such as chemical weapons, DDT and lobotomies.

Internet giants race to faster mobile news apps

October 4, 2015

US tech giants are turning to the news in their competition for mobile users, developing new, faster ways to deliver content, but the benefits for struggling media outlets remain unclear.

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.